Hi. I am trying to understand a statement from Peskin and Schroeder at page 59 they write;(adsbygoogle = window.adsbygoogle || []).push({});

"The one particle states

[tex] |\vec p ,s \rangle \equiv \sqrt{2E_{\vec p}}a_{\vec p}^{s \dagger} |0\rangle[/tex]

are defined so that their inner product

[tex]\langle \vec p, r| \vec q,s\rangle = 2 \vec E_\vec{p} (2\pi)^3 \delta^{(3)}(\vec p - \vec q) \delta^{rs}[/tex]

is Lorentz invariant. This implies that the operator [itex]U(\Lambda)[/itex] that implements Lorentz transformations on hte states of the Hilbert space is unitary, even tough for boosts [itex]\Lambda_{1/2}[/itex] is not unitary."

Then they draw the conclusion from the above equations that

[tex]U(\Lambda)a_\vec{p}^s U^{-1}(\Lambda) = \sqrt{ \frac{ E_{\Lambda \vec{p} } }{E_{\vec p} }} a_{\Lambda \vec p}^s.[/tex]

So my question is; how do they see that [itex]U(\Lambda)[/itex] must be unitary? And how do they conclude with the last equation? :)

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Unitary operator + Lorents transformations (question from Peskin)

**Physics Forums | Science Articles, Homework Help, Discussion**