MHB Universal Propeties in Category Theory .... Leinster Lemma 0.7 ....

Click For Summary
The discussion revolves around understanding Lemma 0.7 from Tom Leinster's "Basic Category Theory," specifically the proof involving the uniqueness aspect of universal properties. The proof asserts that given two objects with universal properties, one can demonstrate their isomorphism. Participants clarify that the lemma does not assume what it aims to prove, as the uniqueness is a given in the context of universal properties. They emphasize the importance of visual aids, such as diagrams, to grasp the concepts better. The conversation concludes with an acknowledgment of the need for further study of the lemma and related examples.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Tom Leinster's book: "Basic Category Theory" and am focused on Chapter 1: Introduction where Leinster explains the basic idea of universal properties ...

I need help in order to fully understand the proof of Lemma 0.7 ...

Lemma 0.7 and its proof read as follows:View attachment 8333In the above proof by Leinster we read the following:

" ... ... So by the uniqueness part of the universal property of b ... ... "My question is ... isn't this assuming what we are trying to prove ... that is that b is essentially unique ...Help will be appreciated ...

Peter
 
Physics news on Phys.org
No, it is given that b and b' have a universal property that means that they have some kind of uniqueness property, using that, you can prove that T and T' are isomorphic.
 
In this example, you could say that $(T,b)$ has the following universal property:

For every vector space $W$ and every bilinear map $f:U \times V \Longrightarrow T$ there is a unique $\bar{f}:T \Longrightarrow W$ such that $\bar{f} \circ b=f$

So in Lemma 0.7: $(T,b)$ has this universal property
For the vector space $T'$ and the bilinear map $b':U \times V \Longrightarrow T'$, there is a unique map ...

Conversely, $(T',b')$ has also this universal property
For the vector space $T$ and the bilinear map $b:U \times V \Longrightarrow T$, there is a unique map ...

Make a lot of diagrams, see the book.

In the end, you will see that $T \cong T'$

Another Edit
In the book of Bland, in chapter 2.1, you saw the universal property of direct products and direct sums. You can read it and see if you can recognize the universal properties. In Simmons you will see universal properties in chapter 2.5 and others. It is very important
 
Last edited:
steenis said:
In this example, you could say that $(T,b)$ has the following universal property:

For every vector space $W$ and every bilinear map $f:U \times V \Longrightarrow T$ there is a unique $\bar{f}:T \Longrightarrow W$ such that $\bar{f} \circ b=f$

So in Lemma 0.7: $(T,b)$ has this universal property
For the vector space $T'$ and the bilinear map $b':U \times V \Longrightarrow T'$, there is a unique map ...

Conversely, $(T',b')$ has also this universal property
For the vector space $T$ and the bilinear map $b:U \times V \Longrightarrow T$, there is a unique map ...

Make a lot of diagrams, see the book.

In the end, you will see that $T \cong T'$

Another Edit
In the book of Bland, in chapter 2.1, you saw the universal property of direct products and direct sums. You can read it and see if you can recognize the universal properties. In Simmons you will see universal properties in chapter 2.5 and others. It is very important

Thanks for a most helpful post Steenis ...

Appreciate your help ...

Will study the example/lemma more carefully ...

Peter
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
615
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K