MHB Unraveling the Mystery: Solving for Real Values in a Complex Equation

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion revolves around solving the equation (2x-1)^{20} - (ax+b)^{20} = (x^2+px+q)^{10} for real values of p, q, a, and b. Initial attempts to expand the equation led to complex coefficients, making it difficult to isolate the variables. A breakthrough was achieved by setting specific values for a and b, leading to relationships between them and the coefficients of the polynomial. Ultimately, the solution was found to be a = ±(2^{20} - 1)^{1/20}, b = ∓(1/2)(2^{20} - 1)^{1/20}, p = -1, and q = 1/4. The collaborative effort highlighted the importance of strategic substitutions in simplifying complex equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

Initially, I thought this is another boring high school mathematics problem, but when I started to work on it, I realized I was beaten by it, with equations in variables $a$, $b$, $p$ and $q$ to which I don't see a clear way to find the values for them.

Problem:

Find all real $p$, $q$, $a$ and $b$ such that we have $$(2x-1)^{20}-(ax+b)^{20}=(x^2+px+q)^{10}$$ for all $x$.

Attempt:

After expanding both sides of the equation using wolfram, I get

$$(1048576-a^{20})x^{20}-(10485760+20a^{19}b)x^{19}+(49807360-190a^{18}b^2)x^{18}+\cdots-(1140a^3b^{17}+9120)x^{3}$$
$$
+(-190a^2b^{18}+760)x^{2}-(20ab^{19}+40)x+1-b^{20}=x^{20}+10px^{19}+(10q^9+45p^2q^8)x^{2}+10pq^9x+q^{10}$$

And I ended up getting extremely messy equations where solving for the values for $a$, $b$, $p$ and $q$ seems impossible by equating the coefficient of $x^{20}$, $x^{19}$, $x^{18}$, $x^{3}$, $x^{2}$, $x$ and the constant...

Could anyone help me with this problem?

Thanks in advance.


 
Mathematics news on Phys.org
Some solutions would be obtained by letting

$$a=2,b=-1$$

and finding the roots for

$$x^2+px+q=0$$
 
Because it is true for all x you can choose any value of x

setting x = 1/2 shall make 1st term = 0

we get

- (b+1/2a)^20 = (1/4 + 1/2p+ q) ^ 10

LHS <=0 and RHS >= 0 so both are 0

So b =- 1/2a and 1/2p + q + 1/4 = 0

So a = - 2b and 2p + 2q + 1 = 0

by putting suitable values of x you can proceed.
 
kaliprasad said:
Because it is true for all x you can choose any value of x

setting x = 1/2 shall make 1st term = 0

we get

- (b+1/2a)^20 = (1/4 + 1/2p+ q) ^ 10

LHS <=0 and RHS >= 0 so both are 0

So b =- 1/2a and 1/2p + q + 1/4 = 0

So a = - 2b and 2p + 2q + 1 = 0

by putting suitable values of x you can proceed.

put x = 0 to get 1= b^20 + q^ 10

so b= (sin t)^(1/10) , q = (cos t)^(1/5)

a = -2 (sin t)^(1/10), p = - ( 1+ (cos t)^(1/5))/2

should be the solution for some t

unless I have missed out something
 
anemone said:
Find all real $p$, $q$, $a$ and $b$ such that we have $$(2x-1)^{20}-(ax+b)^{20}=(x^2+px+q)^{10}$$ for all $x$.
Compare coefficients of $x^{20}$ to get $2^{20} - a^{20} = 1$. So $a = \pm (2^{20} - 1)^{1/20}$. As kaliprasad points out, $b = -\frac12a$, so $b = \mp\frac12(2^{20} - 1)^{1/20}$. Therefore $ax+b = \pm(2^{20} - 1)^{1/20}\bigl(x-\frac12\bigr)$, and $(ax+b)^{20} = (2^{20} - 1)\bigl(x-\frac12\bigr)^{20}$. Thus $$(2x-1)^{20}-(ax+b)^{20}= 2^{20}\bigl(x-\tfrac12\bigr)^{20} - (2^{20} - 1)\bigl(x-\tfrac12\bigr)^{20} = \bigl(x-\tfrac12\bigr)^{20} = \bigl(x^2- x + \tfrac14\bigr)^{10}.$$ So we must take $p=-1$ and $q=\frac14.$

So the solution is $a = \pm (2^{20} - 1)^{1/20}$, $b = \mp\frac12(2^{20} - 1)^{1/20}$, $p=-1$, $q=\frac14.$
 
Thank you all for the replies...I greatly appreciate all the helps!:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top