MHB Unraveling the Mystery: Solving for Real Values in a Complex Equation

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion revolves around solving the equation (2x-1)^{20} - (ax+b)^{20} = (x^2+px+q)^{10} for real values of p, q, a, and b. Initial attempts to expand the equation led to complex coefficients, making it difficult to isolate the variables. A breakthrough was achieved by setting specific values for a and b, leading to relationships between them and the coefficients of the polynomial. Ultimately, the solution was found to be a = ±(2^{20} - 1)^{1/20}, b = ∓(1/2)(2^{20} - 1)^{1/20}, p = -1, and q = 1/4. The collaborative effort highlighted the importance of strategic substitutions in simplifying complex equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

Initially, I thought this is another boring high school mathematics problem, but when I started to work on it, I realized I was beaten by it, with equations in variables $a$, $b$, $p$ and $q$ to which I don't see a clear way to find the values for them.

Problem:

Find all real $p$, $q$, $a$ and $b$ such that we have $$(2x-1)^{20}-(ax+b)^{20}=(x^2+px+q)^{10}$$ for all $x$.

Attempt:

After expanding both sides of the equation using wolfram, I get

$$(1048576-a^{20})x^{20}-(10485760+20a^{19}b)x^{19}+(49807360-190a^{18}b^2)x^{18}+\cdots-(1140a^3b^{17}+9120)x^{3}$$
$$
+(-190a^2b^{18}+760)x^{2}-(20ab^{19}+40)x+1-b^{20}=x^{20}+10px^{19}+(10q^9+45p^2q^8)x^{2}+10pq^9x+q^{10}$$

And I ended up getting extremely messy equations where solving for the values for $a$, $b$, $p$ and $q$ seems impossible by equating the coefficient of $x^{20}$, $x^{19}$, $x^{18}$, $x^{3}$, $x^{2}$, $x$ and the constant...

Could anyone help me with this problem?

Thanks in advance.


 
Mathematics news on Phys.org
Some solutions would be obtained by letting

$$a=2,b=-1$$

and finding the roots for

$$x^2+px+q=0$$
 
Because it is true for all x you can choose any value of x

setting x = 1/2 shall make 1st term = 0

we get

- (b+1/2a)^20 = (1/4 + 1/2p+ q) ^ 10

LHS <=0 and RHS >= 0 so both are 0

So b =- 1/2a and 1/2p + q + 1/4 = 0

So a = - 2b and 2p + 2q + 1 = 0

by putting suitable values of x you can proceed.
 
kaliprasad said:
Because it is true for all x you can choose any value of x

setting x = 1/2 shall make 1st term = 0

we get

- (b+1/2a)^20 = (1/4 + 1/2p+ q) ^ 10

LHS <=0 and RHS >= 0 so both are 0

So b =- 1/2a and 1/2p + q + 1/4 = 0

So a = - 2b and 2p + 2q + 1 = 0

by putting suitable values of x you can proceed.

put x = 0 to get 1= b^20 + q^ 10

so b= (sin t)^(1/10) , q = (cos t)^(1/5)

a = -2 (sin t)^(1/10), p = - ( 1+ (cos t)^(1/5))/2

should be the solution for some t

unless I have missed out something
 
anemone said:
Find all real $p$, $q$, $a$ and $b$ such that we have $$(2x-1)^{20}-(ax+b)^{20}=(x^2+px+q)^{10}$$ for all $x$.
Compare coefficients of $x^{20}$ to get $2^{20} - a^{20} = 1$. So $a = \pm (2^{20} - 1)^{1/20}$. As kaliprasad points out, $b = -\frac12a$, so $b = \mp\frac12(2^{20} - 1)^{1/20}$. Therefore $ax+b = \pm(2^{20} - 1)^{1/20}\bigl(x-\frac12\bigr)$, and $(ax+b)^{20} = (2^{20} - 1)\bigl(x-\frac12\bigr)^{20}$. Thus $$(2x-1)^{20}-(ax+b)^{20}= 2^{20}\bigl(x-\tfrac12\bigr)^{20} - (2^{20} - 1)\bigl(x-\tfrac12\bigr)^{20} = \bigl(x-\tfrac12\bigr)^{20} = \bigl(x^2- x + \tfrac14\bigr)^{10}.$$ So we must take $p=-1$ and $q=\frac14.$

So the solution is $a = \pm (2^{20} - 1)^{1/20}$, $b = \mp\frac12(2^{20} - 1)^{1/20}$, $p=-1$, $q=\frac14.$
 
Thank you all for the replies...I greatly appreciate all the helps!:)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K