MHB Use double or half angle formulas

  • Thread starter Thread starter Elissa89
  • Start date Start date
  • Tags Tags
    Angle Formulas
Click For Summary
The discussion focuses on applying double angle formulas to the equation cos(2*theta) + sin^2 = 0. The relevant double-angle formula for cosine is identified as cos(2*theta) = cos^2(theta) - sin^2(theta). By substituting this into the equation, it simplifies to cos^2(theta) = 0. The conversation seeks further insights on solving for theta from this equation. Overall, the use of double angle formulas is emphasized as a key step in solving trigonometric problems.
Elissa89
Messages
52
Reaction score
0
Ok, So with this problem it says to use double angle or half angle formula. I have the formulas in my notes just not sure how to apply them to the problem I feel like I should be using the double formula though. Here's the problem:

cos(2*theta)+sin^2=0
 
Mathematics news on Phys.org
Yes the double-angle formula for $\cos$ would be useful. There are a few different forms but consider that $\cos (2 \theta) = \cos^2 (\theta) - \sin^2 (\theta)$. Substituting in we get,

$\cos^2 (\theta) - \sin^2 (\theta) + \sin^2 (\theta) = \cos^2 (\theta) = 0$.

Do you have any ideas on how to solve for $\theta$?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
875
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
6K