MHB Use double or half angle formulas

  • Thread starter Thread starter Elissa89
  • Start date Start date
  • Tags Tags
    Angle Formulas
AI Thread Summary
The discussion focuses on applying double angle formulas to the equation cos(2*theta) + sin^2 = 0. The relevant double-angle formula for cosine is identified as cos(2*theta) = cos^2(theta) - sin^2(theta). By substituting this into the equation, it simplifies to cos^2(theta) = 0. The conversation seeks further insights on solving for theta from this equation. Overall, the use of double angle formulas is emphasized as a key step in solving trigonometric problems.
Elissa89
Messages
52
Reaction score
0
Ok, So with this problem it says to use double angle or half angle formula. I have the formulas in my notes just not sure how to apply them to the problem I feel like I should be using the double formula though. Here's the problem:

cos(2*theta)+sin^2=0
 
Mathematics news on Phys.org
Yes the double-angle formula for $\cos$ would be useful. There are a few different forms but consider that $\cos (2 \theta) = \cos^2 (\theta) - \sin^2 (\theta)$. Substituting in we get,

$\cos^2 (\theta) - \sin^2 (\theta) + \sin^2 (\theta) = \cos^2 (\theta) = 0$.

Do you have any ideas on how to solve for $\theta$?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top