Use Euler method to determine the approximation of given problem

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached
Relevant Equations
Numerical methods
1712700876019.png


There is a mistake in my opinion on the text. In my working i have,

##y_1= 3 + 0.2 e^{\cos1} = 3+ 0.54357 = 3.54357##
##y_2 = 3.54357 + 0.2 e^{\cos 1.2} = 4.0871##
##y_3 = 4.0871 + 0.2 e^{\cos 1.4} = 4.6305##

I also noted that we do not have an exact solution for this problem.
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement: see attached
Relevant Equations: Numerical methods

View attachment 343068

There is a mistake in my opinion on the text. In my working i have,

##y_1= 3 + 0.2 e^{\cos1} = 3+ 0.54357 = 3.54357##
##y_2 = 3.54357 + 0.2 e^{\cos 1.2} = 4.0871##
##y_3 = 4.0871 + 0.2 e^{\cos 1.4} = 4.6305##
It's given that ##y_1 = 3## when ##x_1 = 1##
##y_2 = 3 + 0.2e^{\cos(1)} \approx 3.343305## which agrees with the value shown in the image.
 
Mark44 said:
It's given that ##y_1 = 3## when ##x_1 = 1##
##y_2 = 3 + 0.2e^{\cos(1)} \approx 3.343305## which agrees with the value shown in the image.
aaaaaaaah hahaha i was using degrees instead of radians. Silly of me :wink: @Mark44 do we have an exact solution to this problem?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top