Use mathematical logic to prove this proposition

Click For Summary
The discussion focuses on proving the proposition A implies C given the premises A implies B and B implies C, using axioms from a Hilbert System without employing the deduction theorem or Modus Ponens. The axioms provided include implications that form the basis for the proof structure. The proof is constructed by relabeling the variables and applying the axioms systematically to derive the desired conclusion. Key steps involve utilizing the axioms to establish the relationships between the propositions. The conclusion confirms that A implies C follows logically from the initial premises.
solakis1
Messages
407
Reaction score
0
Given the following axioms:
1) ##P\implies(Q\implies P)##
2) ##((P\implies(Q\implies R))\implies((P\implies Q)\implies(P\implies R))## Where ##P,Q,R## are any formulas
3)##(\neg P\implies\neg Q)\implies (Q\implies P)## then prove:

##\{A\implies B,B\implies C\}|- A\implies C##
Without using the deduction theorem and as a rule of inference M.ponens
 
Last edited by a moderator:
Mathematics news on Phys.org
Your OP outlines the axioms of a Hilbert System. Go to the wiki page on Hilbert Systems and search "(HS2)" to see a proof of the following proposition from those axioms using Modus Ponens as rule of inference.
$$(p \to q) \to ((q \to r) \to (p \to r))$$
Relabel ##p,q,r## as ##A,B,C## to get
$$(A \to B) \to ((B \to C) \to (A \to C))$$
Then we have:
\begin{align}
&\vdash(A \to B) \to ((B \to C) \to (A \to C))\\
(A \to B), (B \to C)&\vdash(A \to B) \to ((B \to C) \to (A \to C))\\
(A \to B), (B \to C)&\vdash A\to B\quad\quad\textrm{[1st axiom]}\\
(A \to B), (B \to C)&\vdash(B \to C) \to (A \to C)
\quad\quad\textrm{[Modus Ponens on 3, 2]}\\
(A \to B), (B \to C)&\vdash B\to C \quad\quad\textrm{[2nd axiom]}\\
(A \to B), (B \to C)&\vdash A \to C
\quad\quad\textrm{[Modus Ponens on 5, 4]}
\end{align}