Use mathematical logic to prove this proposition

AI Thread Summary
The discussion focuses on proving the proposition A implies C given the premises A implies B and B implies C, using axioms from a Hilbert System without employing the deduction theorem or Modus Ponens. The axioms provided include implications that form the basis for the proof structure. The proof is constructed by relabeling the variables and applying the axioms systematically to derive the desired conclusion. Key steps involve utilizing the axioms to establish the relationships between the propositions. The conclusion confirms that A implies C follows logically from the initial premises.
solakis1
Messages
407
Reaction score
0
Given the following axioms:
1) ##P\implies(Q\implies P)##
2) ##((P\implies(Q\implies R))\implies((P\implies Q)\implies(P\implies R))## Where ##P,Q,R## are any formulas
3)##(\neg P\implies\neg Q)\implies (Q\implies P)## then prove:

##\{A\implies B,B\implies C\}|- A\implies C##
Without using the deduction theorem and as a rule of inference M.ponens
 
Last edited by a moderator:
Mathematics news on Phys.org
Your OP outlines the axioms of a Hilbert System. Go to the wiki page on Hilbert Systems and search "(HS2)" to see a proof of the following proposition from those axioms using Modus Ponens as rule of inference.
$$(p \to q) \to ((q \to r) \to (p \to r))$$
Relabel ##p,q,r## as ##A,B,C## to get
$$(A \to B) \to ((B \to C) \to (A \to C))$$
Then we have:
\begin{align}
&\vdash(A \to B) \to ((B \to C) \to (A \to C))\\
(A \to B), (B \to C)&\vdash(A \to B) \to ((B \to C) \to (A \to C))\\
(A \to B), (B \to C)&\vdash A\to B\quad\quad\textrm{[1st axiom]}\\
(A \to B), (B \to C)&\vdash(B \to C) \to (A \to C)
\quad\quad\textrm{[Modus Ponens on 3, 2]}\\
(A \to B), (B \to C)&\vdash B\to C \quad\quad\textrm{[2nd axiom]}\\
(A \to B), (B \to C)&\vdash A \to C
\quad\quad\textrm{[Modus Ponens on 5, 4]}
\end{align}
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top