Use Stokes' theorem on intersection of two surfaces

Click For Summary

Homework Help Overview

The discussion revolves around applying Stokes' theorem to the intersection of two surfaces, specifically focusing on the parameterization of surface A and the implications for surface B. The original poster attempts to set up a surface integral but encounters difficulties with the Jacobian and the parameterization process.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • The original poster provides a parameterization for surface A and attempts to derive a corresponding parameterization for surface B. They express confusion regarding the calculation of the Jacobian and the nature of the surface integral.
  • Some participants question the appropriateness of the parameterization for surface A, suggesting it lacks a second parameter necessary for a surface definition.
  • Others suggest reconsidering the choice of surface for the application of Stokes' theorem, emphasizing the need for clarity in the integration process and the implications of the chosen surface on the integral's complexity.
  • There are discussions about notation and the mixing of concepts related to surface and volume integrals, particularly concerning the Jacobian and surface elements.

Discussion Status

The discussion is ongoing, with participants providing guidance on the parameterization and the application of Stokes' theorem. There is a recognition of the need for a clearer understanding of the surface integral and the implications of the chosen parameterization. Multiple interpretations of the problem are being explored, particularly regarding the setup of the integral and the parameterization of the surfaces.

Contextual Notes

There is a noted confusion regarding the parameterization of surfaces and the calculation of the Jacobian, which is complicated by the original poster's approach. The discussion also highlights the need for clarity in notation and the definitions of the integrals involved.

Addez123
Messages
199
Reaction score
21
Homework Statement
A = (yz + 2z, xy -x + z, xy + 5y)
Surface A: x^2 + z^2 = 4
Surface B: x + y = 2

The intersection of A and B creates a curve. Use stokes theorem to calculate the line integral along this curve.
Relevant Equations
Stokes Theorem
I parameterize surface A as:
$$A = (2cos t, 0, 2sin t), t: 0 \rightarrow 2pi$$

Then I get y from surface B:
$$y = 2 - x = 2 - 2cos t$$

$$r(t) = (2cost t, 2 - 2cos t, 2sin t)$$

Now I'm asked to integral over the surface, not solve the line integral.
So I create a new function to cover the surface, call it g.
$$g(u, t) = u * r(t), u: 0 \rightarrow 1$$

$$\oint A dr = \iint rot A dS$$

$$\iint rot A dS = \iint rot A * \hat n * |J| du dr$$

$$J = d(x, y, z)/d(u, r)$$
I can't calculate the jacobian |J| because it's not a square matrix.
Idk what to do, this is where I get stuck.
 
Physics news on Phys.org
What line integral are you supposed to calculate?
 
The line that's created by the intersection of surface A and B.
 
There are several issues with your approach.
Addez123 said:
I parameterize surface A as:
$$A = (2cos t, 0, 2sin t), t: 0 \rightarrow 2pi$$
This is not the parametrization of a surface, it only has a single parameter.

Addez123 said:
Then I get y from surface B:
$$y = 2 - x = 2 - 2cos t$$
You have now introduced y, which could be used as the second parameter for A.
Addez123 said:
$$r(t) = (2cost t, 2 - 2cos t, 2sin t)$$

Now I'm asked to integral over the surface, not solve the line integral.
Not over the surface. You are asked to apply Stokes’ theorem. There are many surfaces with your given curve as its boundary. You need to pick one such surface. Preferably one that makes the integration easy.

Addez123 said:
So I create a new function to cover the surface, call it g.
$$g(u, t) = u * r(t), u: 0 \rightarrow 1$$
You have now implicitly chosen a surface. The surface formed by straight lines from the origin to your curve. This is not guaranteed to give you a nice integral. You should wait with choosing the surface until you know what the curl looks like.

Addez123 said:
$$\oint A dr = \iint rot A dS$$

$$\iint rot A dS = \iint rot A * \hat n * |J| du dr$$
You should use a better notation. Don’t use * for any type of multiplication. To make things worse you have here used it for two different types of multiplication and you are not using ##\cdot## for the inner product as should be required.

Furthermore, it is not clear what you mean by the Jacobian appearing here. You seem to mix the surface integral with the volume integral. The surface element is given by
$$
d\vec S = (\partial \vec x/\partial t)\times(\partial \vec x/\partial u) dt\, du
$$

Addez123 said:
$$J = d(x, y, z)/d(u, r)$$
I can't calculate the jacobian |J| because it's not a square matrix.
Idk what to do, this is where I get stuck.
Because you are mixing up the Jacobian appearing in a coordinate transformation of a volume integral with the parametrization of the surface element.
 
  • Like
Likes   Reactions: Addez123 and PhDeezNutz

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K