MHB Use the techniques of geometric series

Click For Summary
The discussion focuses on evaluating the series S_n = ∑(7^n/n!) from n=1 to infinity, with participants considering various convergence tests. The ratio test is suggested as a suitable method for this series, which resembles the Maclaurin series for e^x. It is noted that the series can be expressed as e^x - 1, where x equals 7, to account for the starting index of n=1. Participants emphasize the importance of understanding different convergence techniques, including telescoping series and various comparison tests. Ultimately, the ratio test is confirmed as an effective approach for determining convergence in this context.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.WS10.a}$
\begin{align*}
&\textsf{use the techniques of geometric series} \\
&-\textsf {telescoping series, p-series, n-th term } \\
&-\textsf{divergence test, integral test, comparison test,} \\
&-\textsf{limit comparison test,ratio test, root test, } \\
&-\textsf {absolute convergence, alternating series test}
\end{align*}\begin{align*}
\displaystyle
S_n&=\sum_{n=1}^{\infty} \frac{7^n}{n!}\\
&=
\end{align*}
$\textsf{not sure what test to use on this, was thinking ratio test?}$
🎃
 
Physics news on Phys.org
If we are to simply evaluate the given series, consider the following Maclaurin series:

$$e^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}$$

Can you proceed?
 
\begin{align*}
\displaystyle
S_n&=\sum_{n=0}^{\infty} \frac{7^n}{n!}\\
e^7 &=1+7+\frac{7^2}{2!}
+\frac{7^3}{3!}+\frac{7^4}{4!}+\cdots \\
e^7 &=1+7+\frac{49}{2}+\frac{343}{6}+\frac{2401}{24}+\cdots
\end{align*}
$\textsf{however this problem was given with }$ $n=1$
🎃
 
karush said:
\begin{align*}
\displaystyle
S_n&=\sum_{n=0}^{\infty} \frac{7^n}{n!}\\
e^7 &=1+7+\frac{7^2}{2!}
+\frac{7^3}{3!}+\frac{7^4}{4!}+\cdots \\
e^7 &=1+7+\frac{49}{2}+\frac{343}{6}+\frac{2401}{24}+\cdots
\end{align*}
$\textsf{however this problem was given with }$ $n=1$
🎃

So, then I would write:

$$e^x-1=\sum_{k=1}^{\infty}\frac{x^k}{k!}$$ ;)
 
karush said:
$\tiny{242.WS10.a}$
\begin{align*}
&\textsf{use the techniques of geometric series} \\
&-\textsf {telescoping series, p-series, n-th term } \\
&-\textsf{divergence test, integral test, comparison test,} \\
&-\textsf{limit comparison test,ratio test, root test, } \\
&-\textsf {absolute convergence, alternating series test}
\end{align*}\begin{align*}
\displaystyle
S_n&=\sum_{n=1}^{\infty} \frac{7^n}{n!}\\
&=
\end{align*}
$\textsf{not sure what test to use on this, was thinking ratio test?}$
🎃

The ratio test should work fine :)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K