MHB Use Wronskian to show only 2 indepndent solutions of 2nd order ODE

ognik
Messages
626
Reaction score
2
Given standard ODE $ y'' + P(x)y' + Q(x)y=0 $, use wronskian to show it cannot have 3 independent sltns. Assume a 3rd solution and show W vanishes for all x.

so 1st row of W = {$ {y}_{1}, {y}_{2},{y}_{3} $}, 2nd row is 1st derivatives, 3rd row is 2nd derivatives.

I can find the determinate, W (should it be written as |W| ?) = $ y_1 y'_2y''_3 - y_1y''_2y'_3 - y_2y'_1y''_3 + y_2y''_1y'_3 + y_3y'_1y''_2 - y_3y''_1y'_2 $

I know that $ y_1y'_2 - y_2y'_1 \ne 0 $(IE $y_3$ is the 'other' solution), so I grouped the above into $ y''_3(y_1y'_2 - y_2y'_1) - y''_2(y_1y'_3 - y_3y'_1) - y''_1(y_2y'_3 - y_3y'_1) $. The terms in brackets are Wronskians and if the 3 solutions are linearly independent, then they cannot=0. It would be convenient then, to have the 2nd derivatives = 0, but I can't argue that as the y(x)'s could have $x^2$ terms...

I have tried various other combinations, but most of them just transform to expansions by a different row/column. Can anyone give me a hint please?
 
Physics news on Phys.org
Assuming your Wronskian is correct, maybe you could substitute $y_2''=-P(x) y_2'-Q(x) y_2$, and the same for the other two solutions?
 
... and they all cancel neatly, I wish I could think of these obvious-in-retrospect approaches.
 
Well, in this case, what led me to that suggestion was that, so far, you had not used the fact that the functions were solutions. That had to be important.
 
I also thought it important, but instead thought that suggested using the Wronskian, I think with a lot more practice it gets better, its just frustrating when missing something obvious costs me many hours ... without this forum I suspect I would have given up by now, so I really appreciate all the help!
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top