MHB Use Wronskian to show only 2 indepndent solutions of 2nd order ODE

ognik
Messages
626
Reaction score
2
Given standard ODE $ y'' + P(x)y' + Q(x)y=0 $, use wronskian to show it cannot have 3 independent sltns. Assume a 3rd solution and show W vanishes for all x.

so 1st row of W = {$ {y}_{1}, {y}_{2},{y}_{3} $}, 2nd row is 1st derivatives, 3rd row is 2nd derivatives.

I can find the determinate, W (should it be written as |W| ?) = $ y_1 y'_2y''_3 - y_1y''_2y'_3 - y_2y'_1y''_3 + y_2y''_1y'_3 + y_3y'_1y''_2 - y_3y''_1y'_2 $

I know that $ y_1y'_2 - y_2y'_1 \ne 0 $(IE $y_3$ is the 'other' solution), so I grouped the above into $ y''_3(y_1y'_2 - y_2y'_1) - y''_2(y_1y'_3 - y_3y'_1) - y''_1(y_2y'_3 - y_3y'_1) $. The terms in brackets are Wronskians and if the 3 solutions are linearly independent, then they cannot=0. It would be convenient then, to have the 2nd derivatives = 0, but I can't argue that as the y(x)'s could have $x^2$ terms...

I have tried various other combinations, but most of them just transform to expansions by a different row/column. Can anyone give me a hint please?
 
Physics news on Phys.org
Assuming your Wronskian is correct, maybe you could substitute $y_2''=-P(x) y_2'-Q(x) y_2$, and the same for the other two solutions?
 
... and they all cancel neatly, I wish I could think of these obvious-in-retrospect approaches.
 
Well, in this case, what led me to that suggestion was that, so far, you had not used the fact that the functions were solutions. That had to be important.
 
I also thought it important, but instead thought that suggested using the Wronskian, I think with a lot more practice it gets better, its just frustrating when missing something obvious costs me many hours ... without this forum I suspect I would have given up by now, so I really appreciate all the help!
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top