- #1
sagamore4110
- 2
- 0
Homework Statement
Given a set of fundamental solutions {ex*sinx*cosx, ex*cos(2x)}
Homework Equations
y''+p(x)y'+q(x)=0
det W(y1,y2) =Ce-∫p(x)dx
The Attempt at a Solution
I took the determinant of the matrix to get
e2x[cos(2x)cosxsinx-2sin(2x)sinxcosx-cos(2x)sinxcosx- cos2xcos(2x)+sin2xcos(2x)
Then using the identities sin2x+cos2x = 1 (for the last 2 terms) and sin(2x) = 2sinx*cosx (for the second term) and cancelling the 2 "cos(2x)cosxsinx" (first and third terms) I got
-e2x(sin2x+cos(2x))
Setting this equal to Ce-∫p(x)dx and trying to solve I got as far as
ln(-e2x(sin2x+cos(2x))/C) = -∫p(x)dx
and now I'm a little bit stuck, I also don't know how to solve for q(x) here. Thanks for the help!