Wronskian Definition and 13 Discussions

In mathematics, the Wronskian (or Wrońskian) is a determinant introduced by Józef Hoene-Wroński (1812) and named by Thomas Muir (1882, Chapter XVIII). It is used in the study of differential equations, where it can sometimes show linear independence in a set of solutions.

View More On Wikipedia.org
  1. S

    I Constructing a 2nd order homogenous DE given fundamental solution

    Homework Statement Given a set of fundamental solutions {ex*sinx*cosx, ex*cos(2x)} Homework Equations y''+p(x)y'+q(x)=0 det W(y1,y2) =Ce-∫p(x)dx The Attempt at a Solution I took the determinant of the matrix to get e2x[cos(2x)cosxsinx-2sin(2x)sinxcosx-cos(2x)sinxcosx-...
  2. Cocoleia

    A Wronskian- variation of Params Problem

    Homework Statement y''-4y'+4y=(12e^2x)/(x^4) I am trying to solve this differential equation. I know you would use the variation of parameters method, and I am trouble with the wronskian. My solution manual doesn't actually use a wronskian so I can't verify my work Homework Equations The...
  3. Kanashii

    Solve for the solution of the differential equation

    Homework Statement Solve for the solution of the differential equation and use the method of variation of parameters. x`` - x = (e^t) + t Homework Equations [/B] W= (y2`y1)-(y2y1`) v1 = integral of ( g(t) (y1) ) / W v2 = integral of ( g(t) (y2) ) / W The Attempt at a Solution [/B] yc= c1...
  4. maiacaroline

    Abel's Equation and Wronskian for find out y2

    Homework Statement x²y''+xy'+(x²-0,25)y=0 y1= x^-1/2*sin x Homework Equations Abel's equation: W= c.e^-(integrate (p(t)) The Attempt at a Solution My Wronskian gave me a first order ODE that I really don't know solve. x^-1/2*sinx y' + (1/2 x^-3/2 sin x- x^-1/2cosx) y2 I don't solved the...
  5. B

    Wronskian and differential equations

    Homework Statement The problems are in the uploaded file. 18) satisfies the differential equation y''+p(t)*y'+q(t)*y=0 p(t) and q(t) are continuous Homework Equations Wronskian of y1 and y2 The Attempt at a Solution 18) I don't really get this one 19) Solved most but at the end, where I...
  6. B

    Wronskian and two solutions being independent

    In the uploaded file, question 11 says that in b) the solutions y1 and y2 are linearly independent but the Wronskian equals 0. I think it said that they are independent because it's not a fixed constant times the other solution (-1 for -1<=t<=0 and 1 for 0<=t<=1) but it clearly says in the...
  7. kostoglotov

    Need help interpreting the Wronskian

    I'm given bases for a solution space \left \{ x,xe^x,x^2e^x \right \}. Clearly these form a basis (are linearly independent). But, unless I've made a mistake, doing the Wronskian on this yields W(x) = x^3e^x. Isn't this Wronskian equal to zero at x = 0? Isn't that a problem for...
  8. N

    Using Abel's Theorem, find the Wronskian

    Using Abel's thrm, find the wronskian between 2 soltions of the second order, linear ODE: x''+1/sqrt(t^3)x'+t^2x=0 t>0 I think I got the interal of 1/sqrt(t^3) to be 2t/sqrt(t^3) but this is very different to the other examples I've done where a ln is formed to cancel out the e in the formula...
  9. S

    Fundamental matrix vs Wronskian

    I have just learned the first order system of ODE, i found that the Wronskian in second order ODE is |y1 y2 ; y1' y2'| but in first order system of ODE is the Wronskian is W(two solution), i wonder which ones is the general form? thank you very much
  10. W

    Construct a second order ODE given the solutions?

    Homework Statement I've been stuck on this problem for three days now, and I have no clue how to solve it. Construct a linear differential equation of order 2, for which { y_1(x) = sin(x), y_2(x) = xsin(x)} is a set of fundamental solutions on I = (0,\pi) . Homework Equations Wronskian for...
  11. B

    Wronskian to determine L.D

    Homework Statement Hello, I was just looking for a quick tip: If I have three distinct solutions to a second order linear homogeneous d.e, how would I show that the wronskian of (y1,y2,y3)(x)=0? I know how to show the wronskian is not zero for a linearly independent set, but I'm confused...
  12. T

    Integrating sine^x

    Homework Statement Solve by variation of parameters: y" + 3y' + 2y = sinex Homework Equations Finding the complimentary yields: yc = c1e-x + c2e-2x The Attempt at a Solution I set up the Wronskians and got: μ1 = ∫e-2xsin(ex)dx μ2 = -∫e-xsin(ex)dx The problem is that I have no idea how to...
  13. T

    Help with Wronskian Equation

    Homework Statement W(t) = W(y1, y2) find the Wronskian. Equation for both y1 and y2: 81y'' + 90y' - 11y = 0 y1(0) = 1 y1'(0) = 0 Calculated y1: (1/12)e^(-11/9 t) + (11/12)e^(1/9 t) y2(0) = 0 y2'(0) = 1 Calculated y2: (-3/4)e^(-11/9 t) + (3/4)e^(1/9 t) Homework Equations W(y1, y2) = |y1...