1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Using Legendre Polynomials in Electro

  1. Oct 10, 2013 #1
    1. The problem statement, all variables and given/known data

    A conducting spherical shell of radius R is cut in half and the two halves are
    infinitesimally separated (you can ignore the separation in the calculation). If the upper
    hemisphere is held at potential V0 and the lower half is grounded find the approximate
    potential for the region r > R (keeping terms up to and including those ~ r-4 ).

    [Hint: you will need to expand the expression for the potential at the surface in terms of
    Legendre polynomials and make use of the orthogonality of the Legendre polynomials to
    determine the necessary coefficients].


    2. Relevant equations

    Multipole expansion of V; Poisson's equation with ρ(charge density)=0 when r>R

    3. The attempt at a solution

    So I'm having trouble starting this. My initial gut feeling would be to solve the poisson equation outside the sphere, with [itex]\nabla^{2}V(r,θ)=0[/itex] , in spherical coordinates and then apply boundary conditions.
    with θ as the angle from the z-axis towards the x-y plane

    However the Hint made me think that the whole system is a kind of dipole, so that I would have to use the multipole expansion. I do not understand how to expand the expression in terms of Legendre Polynomials.

    I know that the solution to poisson's equation in spherical coordinates involves a legendre polynomial Pλ(cosθ) and I know the series for a legendre polynomial. The problem is that I don't know how to combine both the multipole expansion and the poisson equation solution.

    Can anyone help me understand this "Hint" better, and what it means to express the multipole expansion in terms of Legendre polynomials?
     
  2. jcsd
  3. Oct 11, 2013 #2

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    The multipole expansion for azimuthally symmetric problems is in fact an expansion in terms of Legendre Polynomials!
     
  4. Oct 11, 2013 #3
    Unless there is another formula for the multipole expansion, but doesn't that formula only work if there is a charge density? There isn't any charge in this problem, only a fixed potential difference.
     
  5. Oct 11, 2013 #4
    I think I found the correct answer. I didn't use multipole expansion at all, I just used the solution to Poisson's equation in spherical coordinates. I had to use a Fourier transform to find the coefficients in terms of R, Vo and Legendre polynomials. I'm only asked for terms up to r^-4 so I only needed coefficients in the Fourier series from n=0 to n=3, so there were only 4 coefficients I had to solve for, for each one I used the corresponding Legendre term in the expression.

    My solution satisfies the Boundary conditions, so thanks to the beautiful uniqueness theorem, I have my solution. :D
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Using Legendre Polynomials in Electro
Loading...