Using parametric differentiation to evaluate the slope of a curve - attempted

chuffy
Messages
22
Reaction score
0

Homework Statement



x(t) = (t^2 -1) / (t^2 +1)

y(t) = (2t) / (t^2 +1)

at the point t=1

Homework Equations



Line equation = y-y1 = m(x-x1)

chan rule = (dy/dt) / (dx/dt) = dy/dx

The Attempt at a Solution



I find the y1 and x1 values by subing in t=1 to the x(t) and y(t) equations
I get the point (0,1) when t=1

I have used the Quotient rule to find dx/dt & dy/dx (Is this right?)
Doing the above I get:

dy/dt = (-2(t^2 -1)) / (t^2+1)^2

dx/dt = (4t) / (t^2 +1)^2

So dy/dx = (dy/dt) / (dx/dt) however when I sub in t=1 to (dy/dt) I get 0 as the numerator

I know that the m of the line equation is equal to dy/dx

does anyone know what I'm doing wrong? I'll try uploading a pic of my work
cheers
 
Physics news on Phys.org
pic of my working
 

Attachments

  • IMG_20130207_190038.jpg
    IMG_20130207_190038.jpg
    35.3 KB · Views: 398
What makes you think something is wrong? have you plotted the x v y graph for t having a range of values? say t=-1, 0, 1, 2, 3
 
if t=1 does this mean that m= 0?
 


The graph of this function is an ellipse. t= 1 is the point (0, 1) where the tangent line is, in fact, horizontal so the dy/dx= 0 there.
 

Attachments

  • ellipse.jpeg
    ellipse.jpeg
    8.2 KB · Views: 457


cheers
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top