- #1
Leechie
- 19
- 2
Homework Statement
I'm trying to evaluate the following integral to calculate a first-order correction:
$$\int_0^\infty R_{nl}(r)^* \delta \hat {\mathbf H} R_{nl}(r) r^2 dr$$
The problem states that ##b## is small compared to the Bohr radius ##a_o##
Homework Equations
I've been given:
$$R_{nl}(r)=\left( \frac {1} {a_0} \right)^{3/2} 2 e^{-r/a_0}$$ $$\int_0^x e^{-u} du = 1 - e^{-x} $$ $$\int_0^x u e^{-u} du = 1 - e^{-x} - xe^{-x} $$
And I've calculated ##\delta \hat {\mathbf H} ## to be
$$\delta \hat {\mathbf H} = -\frac {e^2} {4 \pi \varepsilon_0} \left( \frac {b} {r^2} - \frac 1 r \right)$$
The Attempt at a Solution
So far I've got:
$$E_1^{(1)} = - \frac {e^2} {4 \pi \varepsilon_0 a_0^3} \left( \int_0^b b e^{ - \frac {2r} {a_0} } dr - \int_0^b r e^{ - \frac {2r} {a_0} } dr \right) $$
And when I use the integrals given I get:
$$E_1^{(1)} = - \frac {e^2} {4 \pi \varepsilon_0 a_0^3} \left( \frac {a_0b} {2} \left(1-e^{-b} \right) - \frac {a_0^2} {4} \left(1-e^{-b}-be^{-b} \right) \right) $$
Could someone tell me if I've got this right so far?
Thanks