- #1

zimo

- 45

- 0

## Homework Statement

Prove the law of transformation of velocities

[tex]\begin{array}{l}

{v_x} = \frac{{{v_x}^\prime + V}}{{1 + {v_x}^\prime V/{c^2}}}\\

{v_y} = \frac{{{v_y}^\prime }}{{\gamma (1 + {v_x}^\prime V/{c^2})}}\\

{v_z} = \frac{{{v_z}^\prime }}{{\gamma (1 + {v_x}^\prime V/{c^2})}}

\end{array}[/tex]

## Homework Equations

Rapidity equations

## The Attempt at a Solution

I proved Vx with an ease using rapidity equations and the identity for tanh(a+b)

now, I'm stuck with revealing the relation to Vy and Vz.