Using the Binomial Theorem, find the first 5 terms in the expansion and estimate

Click For Summary
To find the first five terms of the expansion (1 + 0.07)^9 using the Binomial Theorem, the initial terms can be calculated and summed to estimate the value of 1.07^9. The discussion confirms that simply adding these terms is a valid mathematical approach for estimation. Concerns about needing further calculations are addressed, clarifying that the task is straightforward and does not require additional complexity. The consensus is that the first five terms provide a sufficient estimate, as subsequent terms contribute minimally to the total. Overall, the problem is resolved with confidence in the method used.
singleton
Messages
119
Reaction score
0
Okay, well, perhaps I am already done, perhaps not. This is why I seek your wisdom :)

If you are asked to find the first 5 terms of the expansion (1 + 0.07)^9 using the Binomial Theorem, and then asked to use these terms to estimate the value of 1.07^9 what would you put?

I added the 5 terms and wrote that I estimate the value of 1.07^9 would be that sum.

Is this all the question is asking? Or are you supposed to go further with the terms and do something mathematical? :confused:
 
Mathematics news on Phys.org
Yeah, you added the first 5 terms and that was your estimate of 1.07^9. That seems like all there is.
 
singleton said:
Okay, well, perhaps I am already done, perhaps not. This is why I seek your wisdom :)

If you are asked to find the first 5 terms of the expansion (1 + 0.07)^9 using the Binomial Theorem, and then asked to use these terms to estimate the value of 1.07^9 what would you put?

I added the 5 terms and wrote that I estimate the value of 1.07^9 would be that sum.

Is this all the question is asking? Or are you supposed to go further with the terms and do something mathematical? :confused:

Why would writing out the first 5 terms of the binomial expansion and adding them not be "mathematical"?
 
Oh, well of course that was a mathematical approach...

But I thought this problem would require more thought/something I don't know, as the work it is along with is more than this simple. I thought that I was being tricked :redface:

I guess sometimes a cigar is just a cigar, eh? :D
 
Last edited:
you can find the first five terms by expension.they asked to find the estimate value,which can be obtained by adding the first 4 to 5 terms.the others terms are so small that they can be neglected...
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K