Undergrad Using the Schrodinger eqn in finding the momentum operator

Click For Summary
SUMMARY

The discussion focuses on the derivation of the momentum operator, specifically how to arrive at the expression $$\hat p = -i\hbar \frac{\partial}{\partial x}$$ without relying on the Schrödinger equation. Participants clarify that while the Schrödinger equation incorporates the momentum operator in the kinetic energy term, alternative methods exist to justify the definition of momentum. References to the De Broglie plane waves and Sakurai's book are provided as resources for understanding the momentum operator's origin.

PREREQUISITES
  • Understanding of the Schrödinger equation and its components
  • Familiarity with quantum mechanics terminology, including operators and wave functions
  • Knowledge of Hamiltonian mechanics and its application in quantum systems
  • Basic grasp of differential calculus, particularly partial derivatives
NEXT STEPS
  • Study the derivation of the momentum operator from De Broglie plane waves
  • Explore the concept of momentum as the generator of spatial translations in quantum mechanics
  • Review Sakurai's "Modern Quantum Mechanics" for deeper insights into operator definitions
  • Investigate alternative formulations of quantum mechanics that do not rely on the Schrödinger equation
USEFUL FOR

Students and professionals in quantum mechanics, physicists exploring operator theory, and anyone interested in the foundational aspects of quantum physics and the momentum operator.

Hamiltonian
Messages
296
Reaction score
193
TL;DR
how can we use the Schrodinger equation while finding ##\hat p## when in fact we have already used ##\hat p##(i.e. ##\hat p ^2## in the ##\hat T## term of the ##\hat H##) in the Schrodinger equation?
I have read that the Schrödinger equation has no formal derivation we are simply applying the Hamiltonian operator on the wave function
$$\hat H = i\hbar \frac{\partial}{\partial t} = \hat T + \hat V$$
here we substitute $$\hat T = \frac{\hat p^2}{2m}$$ where $$\hat p = -i \hbar \frac{\partial}{\partial x}$$
but when we derive the equation for ##\hat p## we actually substitute ##\frac{\partial \psi}{\partial t}## and ##\frac{\partial \psi *}{\partial t}## from the Schrödinger equation.

$$< p> = m\frac{d<x>}{dt} = m\int_{-\infty}^{+\infty} x\frac{\partial (\psi^*\psi)}{\partial t}$$
$$<p> = m\int_{-\infty}^{+\infty} x[\psi^*\frac{\partial \psi}{\partial t}+\psi\frac{\partial \psi^*}{\partial t}] dx$$
here we substitute ##\frac{\partial \psi}{\partial t}## and ##\frac{\partial \psi *}{\partial t}## as
$$\frac{\partial \psi}{\partial t} = \frac{i\hbar}{2m}\frac{\partial^2 \psi}{\partial x^2} -\frac{i}{\hbar} V\psi$$
$$\frac{\partial \psi^*}{\partial t} = \frac{-i\hbar}{2m}\frac{\partial^2 \psi^*}{\partial x^2} +\frac{i}{\hbar} V\psi^*$$
after some simplification we end up with
$$<p> = \int_{-\infty}^{+\infty} \psi^* (-i\hbar \frac{\partial}{\partial x})\psi dx$$
and then finally we get $$\hat p = -i\hbar \frac{\partial }{\partial x}$$
so I don't understand how we can use the Schrödinger equation while finding ##\hat p## when in fact we have already used ##\hat p##(i.e. ##\hat p ^2## in the ##\hat T## term of the ##\hat H##) in the Schrödinger equation?
this video does the derivation for the momentum operator
 
Last edited:
Physics news on Phys.org
What you appear to be showing is that$$m\frac{d\langle x \rangle}{dt} = \langle p \rangle$$ where ##\hat p = -i\hbar \frac{\partial}{\partial x}##. And that justifies the original definition of ##\hat p##.
 
PeroK said:
What you appear to be showing is that$$m\frac{d\langle x \rangle}{dt} = \langle p \rangle$$ where ##\hat p = -i\hbar \frac{\partial}{\partial x}##. And that justifies the original definition of ##\hat p##.
how exactly do we find ##\hat p## without using the Schrödinger equation? by finding ##\hat p## I mean how do we arrive at ##\hat p = -i\hbar \frac{\partial}{\partial x}##. I thought the only way of arriving at this would be by using ##m\frac{d<x>}{dt} = <p>## but when we use this approach we need to use the Schrödinger equation but the KE energy term in the Hamiltonian is already using ##\hat p = -i\hbar \frac{\partial}{\partial x}##
 
Hamiltonian299792458 said:
how exactly do we find ##\hat p## without using the Schrödinger equation? by finding ##\hat p## I mean how do we arrive at ##\hat p = -i\hbar \frac{\partial}{\partial x}##. I thought the only way of arriving at this would be by using ##m\frac{d<x>}{dt} = <p>## but when we use this approach we need to use the Schrödinger equation but the KE energy term in the Hamiltonian is already using ##\hat p = -i\hbar \frac{\partial}{\partial x}##
There are ways to motivate the definition of momentum. For example:

https://en.wikipedia.org/wiki/Momentum_operator#Origin_from_De_Broglie_plane_waves

And also on that page momentum as the generator of spatial translations (this is done in Sakurai's book).
 
  • Like
Likes vanhees71 and Hamiltonian
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 56 ·
2
Replies
56
Views
5K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K