Using trigonometry to prove <c=50 degree

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Degree Trigonometry
Click For Summary
SUMMARY

The discussion focuses on using trigonometric identities to prove that in triangle ABC, where angle B is 30 degrees, angle C is conclusively 50 degrees. The relationship established is based on the equation $\overline{BC}^2 - \overline{AB}^2 = \overline{AB} \times \overline{AC}$. This mathematical proof leverages the properties of triangles and trigonometric functions to validate the angle measurement.

PREREQUISITES
  • Understanding of basic trigonometric functions and identities
  • Familiarity with triangle properties and the Law of Cosines
  • Knowledge of angle measurement in degrees
  • Ability to manipulate algebraic expressions involving geometric figures
NEXT STEPS
  • Study the Law of Cosines for triangle calculations
  • Explore trigonometric identities relevant to angle proofs
  • Practice solving problems involving angle measurements in triangles
  • Learn about the relationship between side lengths and angles in non-right triangles
USEFUL FOR

Students of geometry, mathematics educators, and anyone interested in enhancing their understanding of trigonometric proofs and triangle properties.

Albert1
Messages
1,221
Reaction score
0
$\triangle ABC,\angle B=30^o$ and
$\overline{BC}^2-\overline{AB}^2=\overline{AB}\times \overline{AC}$
using trigonometry to prove $\angle C=50^o$
 
Mathematics news on Phys.org
Albert said:
$\triangle ABC,\angle B=30^o$ and
$\overline{BC}^2-\overline{AB}^2=\overline{AB}\times \overline{AC}$
using trigonometry to prove $\angle C=50^o$

we have $\angle B=30^\circ$ hence $\angle A + \angle C=150\circ$ so we caan choose
$\angle A=(75^\circ+\theta)$ and $\angle C=(75^\circ-\theta)$
from the given equation using lay of sines we get
$\sin ^2\angle A - \ sin ^2 \angle C = \sin \angle C \sin\angle B$
or $( \sin \angle A + \sin \angle C)(sin \angle A - \sin \angle C) = \frac{1}{2}\sin \angle C$
or $(\sin ((75^\circ+ \theta) + \sin ((75^\circ - \theta)) (\sin ((75^\circ+ \theta) - \sin ((75^\circ - \theta)) = \frac{1}{2}\sin \angle C$
or $(2 \sin\, 75^\circ \cos \theta)(2 \cos 75^\circ\sin \theta) = \frac{1}{2}\sin \angle C$
or $sin \, 150^\circ \sin 2\theta = \frac{1}{2}\sin \angle C$
or $\frac{1}{2} \sin 2\theta = \frac{1}{2}\sin \angle C$
so $2 \theta = C$ or $2\theta = 180^\circ - C$
from $2\theta = 75 - \theta$ we get $\theta = 25^\circ$ or $C= 50^\circ$
from $2\theta = 180 - (75 - \theta) $ we get $\theta = 105^\circ$ out side limit as it has to be less than $75^\circ$
so
$C= 50^\circ$
proved
 

Similar threads

Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K