Cthugha
Science Advisor
- 2,100
- 581
As already pointed out in the other thread, I disagree with many of the conclusions drawn in this insights article. Maybe the most important point I disagree with is:
As most people outside of high energy physics, here they do not go beyond the simple Jaynes-Cummings model of cavity QED, which of course shares part of the name of the all-out relativistic quantum field theory QED is, but is usually not even treated relativistically.
In cavity QED, accordingly people are interested in vacuum states of cavity modes. For any realistic scenario, these will have a finite quality factor. This may be insanely high as in Haroche's experiments on resonators with millisecond lifetimes or it may be as bad as a piece of glass where reflections occur at the facets. In any case, the fundamental photon mode of the system is now one of finite spectral width and of finite lifetime. And most importantly, it is necessarily coupled to the environment and accordingly an open quantum system. One can easily see this in the finite coherence time one gets for the cavity field. And for open quantum systems I do not see any problems with converting the ensemble average into a time average as long as the averaging time window is much longer than the coherence time of the system.
Outside of high energy physics, any reasonable article on vacuum fluctuations (yes, of course there are also plenty of bad and unreasonable ones) either considers open quantum systems or situations similar to those considered by Glauber in his seminal paper on quantum optics in dielectric media (https://journals.aps.org/pra/abstract/10.1103/PhysRevA.43.467), where he finds that the ground state of the light field inside a dielectric becomes a squeezed state, when analyzed using empty-space photon operators. People usually talk about stuff like that, when they talk about virtual particles in dielectric media and not about internal lines in Feynman diagrams.
Similar things can be said about reference 32 which you discredit for unclear reasons. While active, Zimmermann was one of the most distinguished many-body theorists out there and questioning this is a very daring claim. And of course virtual states have a different meaning when considering ultrafast optics as compared to high energy QED. Edit: this should not have read virtual, but vacuum states.
One does not have to find this terminology useful or elegant, but one should at least acknowledge that in contrast to all-out relativistic QED which is important for precise predictions of energies, cavity QED is interested first and foremost in dynamics and open systems. Of course this results in different meanings in different fields for the same terminology. If you really think that the Science paper is actually wrong, it would be good scientific practice to write a rebuttal.
A. Neumaier said:What is called (not only in this paper, but everywhere where quantum field theory is used) the vacuum is just a mathematical state used in the computations of quantum electrodynamics (QED) with which predictions about experimentally realizable situations are computed in perturbation theory.
As most people outside of high energy physics, here they do not go beyond the simple Jaynes-Cummings model of cavity QED, which of course shares part of the name of the all-out relativistic quantum field theory QED is, but is usually not even treated relativistically.
In cavity QED, accordingly people are interested in vacuum states of cavity modes. For any realistic scenario, these will have a finite quality factor. This may be insanely high as in Haroche's experiments on resonators with millisecond lifetimes or it may be as bad as a piece of glass where reflections occur at the facets. In any case, the fundamental photon mode of the system is now one of finite spectral width and of finite lifetime. And most importantly, it is necessarily coupled to the environment and accordingly an open quantum system. One can easily see this in the finite coherence time one gets for the cavity field. And for open quantum systems I do not see any problems with converting the ensemble average into a time average as long as the averaging time window is much longer than the coherence time of the system.
Outside of high energy physics, any reasonable article on vacuum fluctuations (yes, of course there are also plenty of bad and unreasonable ones) either considers open quantum systems or situations similar to those considered by Glauber in his seminal paper on quantum optics in dielectric media (https://journals.aps.org/pra/abstract/10.1103/PhysRevA.43.467), where he finds that the ground state of the light field inside a dielectric becomes a squeezed state, when analyzed using empty-space photon operators. People usually talk about stuff like that, when they talk about virtual particles in dielectric media and not about internal lines in Feynman diagrams.
Similar things can be said about reference 32 which you discredit for unclear reasons. While active, Zimmermann was one of the most distinguished many-body theorists out there and questioning this is a very daring claim. And of course virtual states have a different meaning when considering ultrafast optics as compared to high energy QED. Edit: this should not have read virtual, but vacuum states.
One does not have to find this terminology useful or elegant, but one should at least acknowledge that in contrast to all-out relativistic QED which is important for precise predictions of energies, cavity QED is interested first and foremost in dynamics and open systems. Of course this results in different meanings in different fields for the same terminology. If you really think that the Science paper is actually wrong, it would be good scientific practice to write a rebuttal.
Last edited: