Van der Pol Equation: Solving w/ Perturbation Methods

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    van der pol
Click For Summary
SUMMARY

The discussion focuses on solving the Van der Pol equation, represented as $$x'' + \varepsilon(x^2-1)x' + x = 0$$ with a small parameter $$\varepsilon$$. The solution employs multiple scale perturbation methods, leading to the derivation of the first-order and perturbed equations. The final solution indicates that as time approaches infinity, the limit cycle radius converges to 2, and the period approaches $$2\pi + \mathcal{O}(\varepsilon)$$, confirming the behavior of the system under small perturbations.

PREREQUISITES
  • Understanding of the Van der Pol equation and its significance in nonlinear dynamics.
  • Familiarity with perturbation methods, particularly multiple scale analysis.
  • Knowledge of differential equations and their solutions.
  • Basic concepts of limit cycles and stability in dynamical systems.
NEXT STEPS
  • Study advanced perturbation techniques in nonlinear differential equations.
  • Explore the implications of limit cycles in other dynamical systems.
  • Learn about numerical methods for solving nonlinear differential equations.
  • Investigate the applications of the Van der Pol equation in engineering and physics.
USEFUL FOR

Researchers, mathematicians, and engineers interested in nonlinear dynamics, particularly those working with differential equations and stability analysis in physical systems.

Dustinsfl
Messages
2,217
Reaction score
5
$$
x'' + \varepsilon(x^2-1)x'+x=0\quad \varepsilon\ll 1
$$
Using multiple scale perturbation and letting $f(x,x') = (x^2-1)x'$, we have
$$
x_{0tt} + \varepsilon x_{1tt} + 2\varepsilon x_{0tT} + \cdots + \varepsilon f(x_0,x_{0t}) + \cdots + x_0 + \varepsilon x_1 + \cdots = 0
$$
where $T$ is our slow time and $T = \varepsilon t$.
\begin{alignat}{4}
\text{order } 1: & \ \ x_{0tt} + x_0 & = & 0\\
\text{order } \varepsilon: & \ \ x_{1tt} + x_1 & = & -2x_{0tT} - f(x_0,x_{0t})
\end{alignat}
So $x_0(t,T) = A(T)\cos t + B(T)\sin t = r(T)\cos(t + \phi(T))$.
\begin{alignat}{3}
x_{1tt} + x_1 & = & -2x_{0tT} - f(x_0,x_{0t})\\
& = & 2[r'\sin(t + \phi) + r\phi'\cos(t+\phi)] - f(r\cos(t+\phi),-r\sin(t+\phi))\\
& = & 2r'\sin\theta + 2r\phi'\cos\theta - f(r\cos\theta,-r\sin\theta)
\end{alignat}
where $\theta = t+\phi$.
$$
f(r\cos\theta,-r\sin\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty}(a_n\cos n\theta + b_n\sin n\theta)
$$
The only resonance terms will occur when $n=1$.
Then
\begin{alignat}{3}
x_{1tt} + x_1 & = & 2r'\sin\theta + 2r\phi'\cos\theta - a_1\cos\theta - b_1\sin\theta - \frac{a_0}{2}-\sum_{n=2}^{\infty}(a_n\cos n\theta + b_n\sin n\theta)\\
& = & \cos\theta(2r\phi'-a_1) + \sin\theta(2r'-b_1) - \text{non-resonance terms}
\end{alignat}
So $2r\phi'-a_1 = 0\Rightarrow \frac{a_1}{2} = r\phi' $ and $2r'-b_1 = 0\Rightarrow \frac{b_1}{2} = r'$.
$$
a_1 = \frac{-1}{\pi}\int_{-\pi}^{\pi}r(r^2\cos^2\theta - 1)\sin\theta\cos\theta d\theta\\
b_1 = \frac{-1}{\pi}\int_{-\pi}^{\pi}r(r^2\cos^2\theta - 1)\sin\theta\sin\theta d\theta
$$
That is,
$$
r' = \frac{-1}{2\pi}\int_{-\pi}^{\pi}[r^3\cos^2\theta\sin^2\theta - r\sin^2\theta] d\theta
$$
and
$$
r\phi' = \frac{-1}{2\pi}\int_{-\pi}^{\pi}[r^3\cos^3\theta\sin\theta - r\sin\theta\cos\theta] d\theta
$$
For $r'$, we can use the orthonormal basis $\left\{\frac{1}{\sqrt{2}},\cos\theta,\cos 2\theta,\ldots,\sin\theta,\ldots\right\}$ to integrate.
\begin{alignat}{3}
-r^3\langle\cos^2\theta\sin^2\theta\rangle + r\langle\sin^2\theta\rangle & = & -\frac{r^3}{2}\langle\sin^2\theta\rangle -\frac{r^3}{2}\langle\cos 2\theta\sin^2\theta\rangle + \frac{r}{2}\\
& = & -\frac{r^3}{4} -\frac{r^3}{2\sqrt{2}}\left\langle\frac{1}{\sqrt{2}}\cos 2\theta\right\rangle - \frac{r^3}{4}\langle\cos^22\theta\rangle + \frac{r}{2}\\
& = & -\frac{r^3}{4} -\frac{r^3}{4}\left\langle \left(\frac{1}{\sqrt{2}}\right)^2 \right\rangle -\frac{r^3}{4\sqrt{2}}\left\langle \frac{1}{\sqrt{2}}\cos 4\theta \right\rangle + \frac{r}{2}\\
&= &-\frac{r^3}{8} + \frac{r}{2}
\end{alignat}
Therefore,
$$
r' = \frac{1}{8}r(r^2-4).
$$
For $r\phi'$, we will use the orthonormal basis.
$$
r\phi' = 0.
$$
\begin{alignat}{3}
\int\frac{8dr}{r(r^2-4)} & = & \int dT\\
\int\phi' & = & 0
\end{alignat}
Thus, $\phi(T) = \phi_0$.
By partial fractions,
$$
\int\left[\frac{1}{r - 2} + \frac{1}{r + 2} - \frac{2}{r}\right]dr = T + k\Rightarrow r(T) = \frac{2}{\sqrt{1 + Ce^{-T}}}
$$
Let $r(0)=r_0$. Then
$$
r(0) = \frac{2}{\sqrt{1 + C}} = r_0\Rightarrow C = \frac{4}{r^2_0} - 1.
$$
$$
r(T) = \frac{2}{\sqrt{1 + \left(\frac{4}{r^2_0} - 1\right)e^{-T}}}
$$
Recall that $x(t,\varepsilon) = r(T)\cos(t+\phi(T)) + \mathcal{O}(\varepsilon)$. Then
$$
x(t,\varepsilon) = \frac{2}{\sqrt{1 + \left(\frac{4}{r^2_0} - 1\right)e^{-T}}}\cos(t + \phi_0) + \mathcal{O}(\varepsilon) =
\frac{2}{\sqrt{1 + \left(\frac{4}{r^2_0} - 1\right)e^{-\varepsilon t}}}\cos(t + \phi_0) + \mathcal{O}(\varepsilon)
$$
We now that that
$$
\lim_{t\to\infty}x(t,\varepsilon) = 2\cos(t + \phi_0)+ \mathcal{O}(\varepsilon)
$$
and
$$
x(t,\varepsilon = 0) = r_0\cos(t+\phi_0).
$$
So the for small epsilon, the period is $2\pi+ \mathcal{O}(\varepsilon)$ and the radius of the limit cycle approaches 2 as $t\to\infty$.
View attachment 509
 

Attachments

  • hw5problem1vanderpollimit.jpg
    hw5problem1vanderpollimit.jpg
    11.1 KB · Views: 102
Physics news on Phys.org
Hi dwsmith, :)

So what is your question?

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi dwsmith, :)

So what is your question?

Kind Regards,
Sudharaka.

I had a question as I was typing but I figure it out. But I decided to finish the problem anyways.
 

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K