MHB Van der Pol Equation: Solving w/ Perturbation Methods

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    van der pol
Click For Summary
The discussion focuses on solving the Van der Pol equation using perturbation methods, specifically multiple scale perturbation. The analysis reveals that the leading order solution is a harmonic function, while the first-order correction introduces resonance terms that affect the amplitude and phase of the oscillation. The resulting expressions for the amplitude and phase evolution show that as time progresses, the amplitude approaches a limit cycle with a radius of 2. The final solution indicates that for small epsilon, the period of oscillation is approximately 2π, and the radius stabilizes as time approaches infinity. The thread concludes with the original poster resolving their initial question while completing the problem.
Dustinsfl
Messages
2,217
Reaction score
5
$$
x'' + \varepsilon(x^2-1)x'+x=0\quad \varepsilon\ll 1
$$
Using multiple scale perturbation and letting $f(x,x') = (x^2-1)x'$, we have
$$
x_{0tt} + \varepsilon x_{1tt} + 2\varepsilon x_{0tT} + \cdots + \varepsilon f(x_0,x_{0t}) + \cdots + x_0 + \varepsilon x_1 + \cdots = 0
$$
where $T$ is our slow time and $T = \varepsilon t$.
\begin{alignat}{4}
\text{order } 1: & \ \ x_{0tt} + x_0 & = & 0\\
\text{order } \varepsilon: & \ \ x_{1tt} + x_1 & = & -2x_{0tT} - f(x_0,x_{0t})
\end{alignat}
So $x_0(t,T) = A(T)\cos t + B(T)\sin t = r(T)\cos(t + \phi(T))$.
\begin{alignat}{3}
x_{1tt} + x_1 & = & -2x_{0tT} - f(x_0,x_{0t})\\
& = & 2[r'\sin(t + \phi) + r\phi'\cos(t+\phi)] - f(r\cos(t+\phi),-r\sin(t+\phi))\\
& = & 2r'\sin\theta + 2r\phi'\cos\theta - f(r\cos\theta,-r\sin\theta)
\end{alignat}
where $\theta = t+\phi$.
$$
f(r\cos\theta,-r\sin\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty}(a_n\cos n\theta + b_n\sin n\theta)
$$
The only resonance terms will occur when $n=1$.
Then
\begin{alignat}{3}
x_{1tt} + x_1 & = & 2r'\sin\theta + 2r\phi'\cos\theta - a_1\cos\theta - b_1\sin\theta - \frac{a_0}{2}-\sum_{n=2}^{\infty}(a_n\cos n\theta + b_n\sin n\theta)\\
& = & \cos\theta(2r\phi'-a_1) + \sin\theta(2r'-b_1) - \text{non-resonance terms}
\end{alignat}
So $2r\phi'-a_1 = 0\Rightarrow \frac{a_1}{2} = r\phi' $ and $2r'-b_1 = 0\Rightarrow \frac{b_1}{2} = r'$.
$$
a_1 = \frac{-1}{\pi}\int_{-\pi}^{\pi}r(r^2\cos^2\theta - 1)\sin\theta\cos\theta d\theta\\
b_1 = \frac{-1}{\pi}\int_{-\pi}^{\pi}r(r^2\cos^2\theta - 1)\sin\theta\sin\theta d\theta
$$
That is,
$$
r' = \frac{-1}{2\pi}\int_{-\pi}^{\pi}[r^3\cos^2\theta\sin^2\theta - r\sin^2\theta] d\theta
$$
and
$$
r\phi' = \frac{-1}{2\pi}\int_{-\pi}^{\pi}[r^3\cos^3\theta\sin\theta - r\sin\theta\cos\theta] d\theta
$$
For $r'$, we can use the orthonormal basis $\left\{\frac{1}{\sqrt{2}},\cos\theta,\cos 2\theta,\ldots,\sin\theta,\ldots\right\}$ to integrate.
\begin{alignat}{3}
-r^3\langle\cos^2\theta\sin^2\theta\rangle + r\langle\sin^2\theta\rangle & = & -\frac{r^3}{2}\langle\sin^2\theta\rangle -\frac{r^3}{2}\langle\cos 2\theta\sin^2\theta\rangle + \frac{r}{2}\\
& = & -\frac{r^3}{4} -\frac{r^3}{2\sqrt{2}}\left\langle\frac{1}{\sqrt{2}}\cos 2\theta\right\rangle - \frac{r^3}{4}\langle\cos^22\theta\rangle + \frac{r}{2}\\
& = & -\frac{r^3}{4} -\frac{r^3}{4}\left\langle \left(\frac{1}{\sqrt{2}}\right)^2 \right\rangle -\frac{r^3}{4\sqrt{2}}\left\langle \frac{1}{\sqrt{2}}\cos 4\theta \right\rangle + \frac{r}{2}\\
&= &-\frac{r^3}{8} + \frac{r}{2}
\end{alignat}
Therefore,
$$
r' = \frac{1}{8}r(r^2-4).
$$
For $r\phi'$, we will use the orthonormal basis.
$$
r\phi' = 0.
$$
\begin{alignat}{3}
\int\frac{8dr}{r(r^2-4)} & = & \int dT\\
\int\phi' & = & 0
\end{alignat}
Thus, $\phi(T) = \phi_0$.
By partial fractions,
$$
\int\left[\frac{1}{r - 2} + \frac{1}{r + 2} - \frac{2}{r}\right]dr = T + k\Rightarrow r(T) = \frac{2}{\sqrt{1 + Ce^{-T}}}
$$
Let $r(0)=r_0$. Then
$$
r(0) = \frac{2}{\sqrt{1 + C}} = r_0\Rightarrow C = \frac{4}{r^2_0} - 1.
$$
$$
r(T) = \frac{2}{\sqrt{1 + \left(\frac{4}{r^2_0} - 1\right)e^{-T}}}
$$
Recall that $x(t,\varepsilon) = r(T)\cos(t+\phi(T)) + \mathcal{O}(\varepsilon)$. Then
$$
x(t,\varepsilon) = \frac{2}{\sqrt{1 + \left(\frac{4}{r^2_0} - 1\right)e^{-T}}}\cos(t + \phi_0) + \mathcal{O}(\varepsilon) =
\frac{2}{\sqrt{1 + \left(\frac{4}{r^2_0} - 1\right)e^{-\varepsilon t}}}\cos(t + \phi_0) + \mathcal{O}(\varepsilon)
$$
We now that that
$$
\lim_{t\to\infty}x(t,\varepsilon) = 2\cos(t + \phi_0)+ \mathcal{O}(\varepsilon)
$$
and
$$
x(t,\varepsilon = 0) = r_0\cos(t+\phi_0).
$$
So the for small epsilon, the period is $2\pi+ \mathcal{O}(\varepsilon)$ and the radius of the limit cycle approaches 2 as $t\to\infty$.
View attachment 509
 

Attachments

  • hw5problem1vanderpollimit.jpg
    hw5problem1vanderpollimit.jpg
    11.1 KB · Views: 100
Physics news on Phys.org
Hi dwsmith, :)

So what is your question?

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi dwsmith, :)

So what is your question?

Kind Regards,
Sudharaka.

I had a question as I was typing but I figure it out. But I decided to finish the problem anyways.
 

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K