How Does Changing the Right-Hand Side of the Matrix Affect the ODE Solution?

Click For Summary
Changing the right-hand side of the matrix in the ODE affects the interpretation of the nonhomogeneous part of the equation. The original equation y''(t) - (a + b) y'(t) + (ab) y(t) = x(t) has a single nonhomogeneous term. If the right side is modified to include two functions, x1(t) and x2(t), it cannot be represented as two separate equations with the same left-hand side; instead, it should combine both terms into one equation, yielding y''(t) - (a + b) y'(t) + (ab) y(t) = x1(t) + x2(t). The zero term in the original matrix accounts for the homogeneous solution, and any new terms must align with this structure. Therefore, the correct formulation maintains a single equation with a combined nonhomogeneous term.
Bruno Tolentino
Messages
96
Reaction score
0
Given a ODE like this:

y''(t) - (a + b) y'(t) + (a b) y(t) = x(t)

The general solution is: y(t) = A exp(a t) + B exp(b t) + u(t) exp(a t) + v(t) exp(b t)

So, for determine u(t) and v(t), is used the method of variation of parameters:
<br /> \begin{bmatrix}<br /> u&#039;(t)\\ <br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> 0\\ <br /> x(t)\\<br /> \end{bmatrix} Where:

y1(t) = exp(a t)
y2(t) = exp(b t)

So, my question is: AND IF the matrix equation above woud be like this:
\begin{bmatrix}<br /> u&#039;(t)\\ <br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> x_1(t)\\ <br /> x_2(t)\\<br /> \end{bmatrix}

How would be the right side of the ODE for matrix equation above?

Would be like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t) + x2(t)

Or like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t)
y''(t) - (a + b) y'(t) + (a b) y(t) = x2(t)

Or other form?
 
Physics news on Phys.org
Bruno Tolentino said:
Given a ODE like this:

y''(t) - (a + b) y'(t) + (a b) y(t) = x(t)

The general solution is: y(t) = A exp(a t) + B exp(b t) + u(t) exp(a t) + v(t) exp(b t)

So, for determine u(t) and v(t), is used the method of variation of parameters:
<br /> \begin{bmatrix}<br /> u&#039;(t)\\<br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> 0\\<br /> x(t)\\<br /> \end{bmatrix} Where:

y1(t) = exp(a t)
y2(t) = exp(b t)

So, my question is: AND IF the matrix equation above woud be like this:
\begin{bmatrix}<br /> u&#039;(t)\\<br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> x_1(t)\\<br /> x_2(t)\\<br /> \end{bmatrix}

How would be the right side of the ODE for matrix equation above?
I don't see how you could get the matrix equation you show, with ##
\begin{bmatrix}
x_1(t)\\
x_2(t)\\
\end{bmatrix}## on the right. The zero term in the
##\begin{bmatrix}
0\\
x(t)\\
\end{bmatrix}##
vector comes from the homogeneous equation, which in this context is y'' -(a + b)y' + (ab)y = 0. The x(t) term in that vector comes from the related nonhomogeneous equation, which is y'' -(a + b)y' + (ab)y = x(t).
Bruno Tolentino said:
Would be like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t) + x2(t)

Or like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t)
y''(t) - (a + b) y'(t) + (a b) y(t) = x2(t)
Bruno Tolentino said:
The form above doesn't make any sense to me. the expression on the left side can't be equal to two different expressions.
Or other form?
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
27
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K