Varying an action wrt a symmetric and traceless tensor

  • Context: Graduate 
  • Thread starter Thread starter binbagsss
  • Start date Start date
  • Tags Tags
    Symmetric Tensor
Click For Summary

Discussion Overview

The discussion centers on the variation of a Lagrangian with respect to a symmetric and traceless tensor, specifically addressing the treatment of the trace of the tensor in the context of the Euler-Lagrange equations. Participants explore the implications of subtracting versus adding the trace term in the formulation.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents a formulation for varying the Lagrangian with respect to the tensor #f^{uv}# and questions why the trace is subtracted rather than added, suggesting that both approaches might be valid.
  • Another participant notes that the trace transforms to itself and implies that the tensor can be decomposed into symmetric traceless, antisymmetric, and trace components, but expresses uncertainty due to the lack of references and clarity in the original post.

Areas of Agreement / Disagreement

Participants express differing views on the treatment of the trace term in the variation process, indicating that there is no consensus on whether to subtract or add the trace. The discussion remains unresolved regarding the implications of these choices.

Contextual Notes

Participants mention conventions related to the signature of the metric and the opposing signs in the Euler-Lagrange equations, but these aspects remain unclear and are not fully resolved.

binbagsss
Messages
1,291
Reaction score
12
Consider a Lagrangian, #L#, which is a function of, as well as other fields #\psi_i#, a traceless and symmetric tensor denoted by #f^{uv}#, so that #L=L(f^{uv})#, the associated action is #\int L(f^{uv}, \psi_i)d^4x #.

To vary w.r.t #f^{uv}# , I write:

#f^{uv}=f_{symm}^{uv}-\frac{1}{d}\eta^{uv} tr(f)#, (1)

where #tr(f)=\eta_{uv}f^{uv}#, where #\eta_{uv}# is the metric associated to the space-time, and #f_{symm}^{uv}= (1/2) (f^{uv}+f^{vu})#.In (1), why is it to subtract the trace, I suspect adding the trace term is just as valid? (and perhaps there is a convention as to which consistent with the signature of the metric)? In the E-L equations, ofc, the variation w.r.t the deriviative of the field comes with the opposing sign, so it doesn't matter which is chose? thanks
 
Physics news on Phys.org
binbagsss said:
Consider a Lagrangian, #L#, which is a function of, as well as other fields #\psi_i#, a traceless and symmetric tensor denoted by #f^{uv}#, so that #L=L(f^{uv})#, the associated action is #\int L(f^{uv}, \psi_i)d^4x #.

To vary w.r.t #f^{uv}# , I write:

#f^{uv}=f_{symm}^{uv}-\frac{1}{d}\eta^{uv} tr(f)#, (1)

where #tr(f)=\eta_{uv}f^{uv}#, where #\eta_{uv}# is the metric associated to the space-time, and #f_{symm}^{uv}= (1/2) (f^{uv}+f^{vu})#.In (1), why is it to subtract the trace, I suspect adding the trace term is just as valid? (and perhaps there is a convention as to which consistent with the signature of the metric)? In the E-L equations, ofc, the variation w.r.t the deriviative of the field comes with the opposing sign, so it doesn't matter which is chose?thanks
Use double-# for equations
https://www.physicsforums.com/help/latexhelp/
 
Adjusted:

Consider a Lagrangian, L which is a function of, as well as other fields ##\psi_i##, a traceless and symmetric tensor denoted by ##f^{uv}##, so that ##L=L(f^{uv})##, the associated action is ##\int L(f^{uv}, \psi_i)d^4x ##.

To vary w.r.t ##f^{uv}## , I write:

##f^{uv}=f_{symm}^{uv}-\frac{1}{d}\eta^{uv} tr(f)##, (1)

where ##tr(f)=\eta_{uv}f^{uv}##, where ##\eta_{uv}## is the metric associated to the space-time, and ##f_{symm}^{uv}= (1/2) (f^{uv}+f^{vu})##.In (1), why is it to subtract the trace, I suspect adding the trace term is just as valid? (and perhaps there is a convention as to which consistent with the signature of the metric)? In the E-L equations, ofc, the variation w.r.t the deriviative of the field comes with the opposing sign, so it doesn't matter which is chose?

--edit-- maybe I'm stupid, but why does the double # not work?
 
binbagsss said:
Consider a Lagrangian, #L#, which is a function of, as well as other fields #\psi_i#, a traceless and symmetric tensor denoted by #f^{uv}#, so that #L=L(f^{uv})#, the associated action is #\int L(f^{uv}, \psi_i)d^4x #.

To vary w.r.t #f^{uv}# , I write:

#f^{uv}=f_{symm}^{uv}-\frac{1}{d}\eta^{uv} tr(f)#, (1)

where #tr(f)=\eta_{uv}f^{uv}#, where #\eta_{uv}# is the metric associated to the space-time, and #f_{symm}^{uv}= (1/2) (f^{uv}+f^{vu})#.In (1), why is it to subtract the trace, I suspect adding the trace term is just as valid? (and perhaps there is a convention as to which consistent with the signature of the metric)? In the E-L equations, ofc, the variation w.r.t the deriviative of the field comes with the opposing sign, so it doesn't matter which is chose?thanks
I'm not sure what you do here, but you subtract the trace because the trace transforms to itself. Usually, one can break up a tensor into a symmetric traceless part, an antisymmetric part and the trace. But since you don't give any reference and your tex is hard to read, I'm merely guessing.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
3K