Vector Algebra: Finding the Angle Between Two Vectors

Click For Summary

Discussion Overview

The discussion revolves around a problem involving four non-zero vectors, specifically focusing on the angles between these vectors and their coplanarity. Participants explore the relationships between the vectors and attempt to prove a specific angle relationship involving vector $\vec{d}$ and the coplanar vectors $\vec{a}$, $\vec{b}$, and $\vec{c}$. The scope includes mathematical reasoning and vector algebra.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a problem statement involving vectors $\vec{a}$, $\vec{b}$, $\vec{c}$, and $\vec{d}$, and proposes a relationship for the angle between $\vec{d}$ and $\vec{c}$.
  • Another participant questions the validity of the claim, suggesting that the directed angle notation may affect the outcome if $\vec{a}$ equals $\vec{c}$.
  • Some participants express uncertainty about the notation used for angles between vectors, indicating a lack of clarity in the problem statement.
  • A later reply confirms that $\hat{c} = \hat{b} - \hat{a}$, providing an alternative method to derive this relationship using dot products.
  • Multiple participants discuss the implications of the coplanarity and independence of the vectors, with one suggesting that unique coefficients can be found to express $\hat{c}$ in terms of $\hat{a}$ and $\hat{b}$.
  • Another participant acknowledges the alternative method presented and expresses appreciation for the approach.

Areas of Agreement / Disagreement

Participants express differing views on the validity of the angle relationship proposed in the problem. There is no consensus on the correctness of the notation or the implications of the directed angle. The discussion remains unresolved regarding the initial claim.

Contextual Notes

Participants highlight potential limitations in the problem's notation and definitions, which may affect the interpretation of the angles involved. There is also mention of assumptions regarding the positioning of vectors in relation to each other.

Saitama
Messages
4,244
Reaction score
93
Problem:
Given four non-zero vectors $\vec{a},\vec{b},\vec{c}$ and $\vec{d}$, the vectors $\vec{a},\vec{b}$ and $\vec{c}$ are coplanar but not collinear pair by pair and $\vec{d}$ is not coplanar with vectors $\vec{a},\vec{b}$ and $\vec{c}$ and $(\widehat{\vec{a}\vec{b}})=(\widehat{\vec{b}\vec{c}})=\frac{\pi}{3}, (\widehat{\vec{d}\vec{a}})=\alpha, (\widehat{\vec{d}\vec{b}})=\beta$, then prove that $(\widehat{\vec{d}\vec{c}})=\arccos(\cos\beta-\cos\alpha)$.

$\widehat{\vec{a}\vec{b}}$ denotes the angle between two vectors.

Attempt:
I have the following:
$$\hat{a}\cdot\hat{b}=\hat{b}\cdot\hat{c}=\frac{1}{2}$$
$$\hat{d}\cdot\hat{a}=\cos\alpha$$
$$\hat{d}\cdot\hat{b}=\cos\beta$$
Subtracting the above two equations, I get
$$\hat{d}\cdot (\hat{b}-\hat{a})=\cos\beta-\cos\alpha$$
I somehow need to show that $\hat{c}=\hat{b}-\hat{a}$ but I don't see how. I notice that $\vec{b}$ is the angle bisector of $\vec{a}$ and $\vec{c}$ but I am not sure if that helps.

Any help is appreciated. Thanks!
 
Physics news on Phys.org
Pranav said:
Given four non-zero vectors $\vec{a},\vec{b},\vec{c}$ and $\vec{d}$, the vectors $\vec{a},\vec{b}$ and $\vec{c}$ are coplanar but not collinear pair by pair and $\vec{d}$ is not coplanar with vectors $\vec{a},\vec{b}$ and $\vec{c}$ and $(\widehat{\vec{a}\vec{b}})=(\widehat{\vec{b}\vec{c}})=\frac{\pi}{3}, (\widehat{\vec{d}\vec{a}})=\alpha, (\widehat{\vec{d}\vec{b}})=\beta$, then prove that $(\widehat{\vec{d}\vec{c}})=\arccos(\cos\beta-\cos\alpha)$.

$\widehat{\vec{a}\vec{b}}$ denotes the angle between two vectors.
The directed angle? Because the claim does not necessarily hold if $\vec{a}=\vec{c}$.

Pranav said:
I somehow need to show that $\hat{c}=\hat{b}-\hat{a}$
If $\vec{a}$ and $\vec{c}$ lie on different sides of $\vec{b}$, then the fact that $\hat{c}=\hat{b}-\hat{a}$ is obvious from the sketch of the plane. (I assume $\hat{e}=\vec{e}/|\vec{e}|$.)
 
Evgeny.Makarov said:
The directed angle? Because the claim does not necessarily hold if $\vec{a}=\vec{c}$.
I am not sure, I don't know the latex code for the symbol used to denote the angle between two vectors. The symbol used in my practice sheet is a triangle without the base. \widehat looked similar so I used that instead.
If $\vec{a}$ and $\vec{c}$ lie on different sides of $\vec{b}$, then the fact that $\hat{c}=\hat{b}-\hat{a}$ is obvious from the sketch of the plane.
Not obvious to me. :(

(I assume $\hat{e}=\vec{e}/|\vec{e}|$.)
Yes. :)
 
Pranav said:
I am not sure, I don't know the latex code for the symbol used to denote the angle between two vectors. The symbol used in my practice sheet is a triangle without the base. \widehat looked similar so I used that instead.
It does not matter how the angle is denoted and whether you can reproduce it in LaTeX. It is important that you know the meaning behind the notation. At a minimum, I suggest you consider the case where $\vec{a}=\vec{c}$ and both form a $60^\circ$ angle with $\vec{b}$. Then the claim is not necessarily true. The best thing would be to go back in your sources and find the definition of this notation. Then you will know if the problem is correct or if it is sloppily stated.

Pranav said:
Not obvious to me.
Consider a hexagon.

200px-Regular_polygon_6_annotated.svg.png


Let the center be denoted by $O$, the top vertex by $A$, and, going clockwise, the following vertices be denoted by $B$ and $C$. All angles in triangles are $60^\circ$, so angle $BOC$ equals angle $OBA$. They are alternating angles for $AB$ and $OC$, so these segments are parallel. It is also easy to see that $AB=OC$.
 
Evgeny.Makarov said:
It does not matter how the angle is denoted and whether you can reproduce it in LaTeX. It is important that you know the meaning behind the notation. At a minimum, I suggest you consider the case where $\vec{a}=\vec{c}$ and both form a $60^\circ$ angle with $\vec{b}$. Then the claim is not necessarily true. The best thing would be to go back in your sources and find the definition of this notation. Then you will know if the problem is correct or if it is sloppily stated.

I never saw that kind of notation being used during the class. It is the first time I have seen the notation. The practice sheet (not provided by my teacher) is also silent and has no clarification so I took a guess that its the angle between the two vectors. Also, I have never heard anything like "directed angle" before.

I have figured out $\hat{c}=\hat{b}-\hat{a}$, thanks a lot Evgeny.Makarov! :)
 
Hey Pranav! :)Here's an alternative method.

Since $\vec a, \vec b, \vec c$ are coplanar and pairwise independent, there have to be unique numbers $\lambda$ and $\mu$, such that:
$$\hat c = \lambda \hat a + \mu \hat b$$

Combine with your first two dot products to find:
\begin{array}{}
\hat c \cdot \hat b &=& \lambda \hat a \cdot \hat b + \mu \hat b \cdot \hat b &=& \frac 1 2 \lambda + \mu &=& \frac 1 2 \\
\hat c \cdot \hat c &=& \lambda^2 \hat a^2 + 2\lambda\mu\hat a \cdot \hat b + \mu^2 \hat b^2 &=& \lambda^2 + \lambda\mu + \mu^2 &=& 1
\end{array}

Solve to find:
$$\lambda=-1, \mu=1$$
Therefore:
$$\hat c = \hat b - \hat a$$
$\blacksquare$
 
I like Serena said:
Hey Pranav! :)Here's an alternative method.

Since $\vec a, \vec b, \vec c$ are coplanar and pairwise independent, there have to be unique numbers $\lambda$ and $\mu$, such that:
$$\hat c = \lambda \hat a + \mu \hat b$$

Combine with your first two dot products to find:
\begin{array}{}
\hat c \cdot \hat b &=& \lambda \hat a \cdot \hat b + \mu \hat b \cdot \hat b &=& \frac 1 2 \lambda + \mu &=& \frac 1 2 \\
\hat c \cdot \hat c &=& \lambda^2 \hat a^2 + 2\lambda\mu\hat a \cdot \hat b + \mu^2 \hat b^2 &=& \lambda^2 + \lambda\mu + \mu^2 &=& 1
\end{array}

Solve to find:
$$\lambda=-1, \mu=1$$
Therefore:
$$\hat c = \hat b - \hat a$$
$\blacksquare$

Thanks ILS! That is also a nice way to solve the problem. :)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
26
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
3K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 12 ·
Replies
12
Views
3K