Vector operator acting on a ket gives a ket out of the state space

Click For Summary

Discussion Overview

The discussion revolves around the nature of vector operators in quantum mechanics, particularly focusing on their action on kets and the implications for state spaces. Participants explore definitions, properties, and the mathematical framework surrounding vector operators, including their representation and the resulting states when applied to kets.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants define a linear operator in quantum mechanics and discuss how vector operators, such as the position operator, act on kets to produce other kets.
  • Others argue that vector operators are sets of three operators, and each operator acts on a ket to yield another ket in the state space.
  • A question is raised about whether the set of operators can be referred to as a single operator.
  • Some participants note the commutation relations of vector operators with total-angular-momentum operators and provide mathematical expressions related to rotations.
  • There is a discussion about the application of vector operators leading to a Cartesian vector of kets and the rarity of directly calculating their application.
  • Concerns are expressed regarding the multiplication of kets by Euclidean vectors, questioning the validity of such operations within the context of quantum mechanics.
  • Clarifications are made that kets are abstract vectors in Hilbert space, not operators, and that wave functions represent components relative to position-operator eigenvectors.
  • A later reply corrects a previous statement about kets being operators, affirming they are indeed vectors in Hilbert space.

Areas of Agreement / Disagreement

Participants express differing views on the nature of vector operators and their action on kets, with no consensus reached on whether the set of operators can be treated as a single operator or how to interpret the resulting states. The discussion remains unresolved regarding the implications of mixing physical vectors with quantum state representations.

Contextual Notes

Limitations include potential misunderstandings about the definitions of operators and kets, as well as the mathematical treatment of vector operators in quantum mechanics. The discussion reflects various interpretations and assumptions that have not been fully reconciled.

Kashmir
Messages
466
Reaction score
74
Definition of linear operator in quantum mechanics
"A linear operator ##A## associates with every ket ##|\psi\rangle \in
\mathcal{E}## another ket ##\left|\psi^{'}\right\rangle \in\mathcal{E}##, the correspondence being linear"

We also have vector operators ##\hat{A}## (such as a position operator ##\hat{r}## )

##\hat{A}=\left(\begin{array}{l}\hat{A}_{1} \\ \hat{A}_{2} \\ \hat{A}_{3}\end{array}\right)##their action on ket is :
##\hat{A}|u\rangle=\left(\begin{array}{c}\hat{A}_{1}|u\rangle \\ \hat{A}_{2}|u\rangle \\ \hat{A}_{3}|u\rangle\end{array}\right)=\left(\begin{array}{c}\left|u_{1}\right\rangle \\ \left|u_{2}\right\rangle \\ \left|u_{3}\right\rangle\end{array}\right)##

But this operator upon acting on a ket didn't give another ket belonging to the same space.

What am I missing?
 
Physics news on Phys.org
Kashmir said:
We also have vector operators
Vector operators are not single operators. They are sets of three operators. Each of the three operators acting on a ket gives another ket in the state space.
 
  • Like
Likes   Reactions: Kashmir, topsquark and vanhees71
PeterDonis said:
Vector operators are not single operators. They are sets of three operators. Each of the three operators acting on a ket gives another ket in the state space.
So one cannot call the set of operator itself as an operator?
 
Kashmir said:
So one cannot call the set of operator itself as an operator?
The term "vector operator" means "a set of 3 operators".
 
  • Like
Likes   Reactions: Kashmir, vanhees71 and topsquark
It's a set of three operators ##\hat{V}_i## that has the commutation relation
$$[\hat{V}_i,\hat{J}_j]=\mathrm{i} \epsilon_{ijk} \hbar \hat{V}_k$$
with the total-angular-momentum operators ##\hat{J}_j##. The Einstein summation convention applies here.

It's easy to prove that for finite rotations, represented by the unitary operator
$$\hat{U}(\vec{n},\varphi) = \exp(-\mathrm{i} \varphi \vec{n} \cdot \hat{\vec{J}}/\hbar),$$
you get
$$\hat{U}(\vec{n},\varphi) \hat{V}_j \hat{U}^{\dagger}(\vec{n},\varphi)=R_{jk}(\vec{n},\varphi) \hat{V}_k.$$
Here ##R_{jk}(\vec{n},\varphi)## is the rotation matrix for a rotation by an angle, ##\varphi##, around the axis given by the unit vector ##\vec{n}##.

Important examples are, of course, the position and momentum operators ##\hat{x}_i## and ##\hat{p}_i## and the angular momentum operators ##\hat{J}_i## themselves.
 
  • Like
Likes   Reactions: topsquark and Kashmir
vanhees71 said:
It's a set of three operators ##\hat{V}_i## that has the commutation relation
$$[\hat{V}_i,\hat{J}_j]=\mathrm{i} \epsilon_{ijk} \hbar \hat{V}_k$$
with the total-angular-momentum operators ##\hat{J}_j##. The Einstein summation convention applies here.

It's easy to prove that for finite rotations, represented by the unitary operator
$$\hat{U}(\vec{n},\varphi) = \exp(-\mathrm{i} \varphi \vec{n} \cdot \hat{\vec{J}}/\hbar),$$
you get
$$\hat{U}(\vec{n},\varphi) \hat{V}_j \hat{U}^{\dagger}(\vec{n},\varphi)=R_{jk}(\vec{n},\varphi) \hat{V}_k.$$
Here ##R_{jk}(\vec{n},\varphi)## is the rotation matrix for a rotation by an angle, ##\varphi##, around the axis given by the unit vector ##\vec{n}##.

Important examples are, of course, the position and momentum operators ##\hat{x}_i## and ##\hat{p}_i## and the angular momentum operators ##\hat{J}_i## themselves.
so when we apply such a " vector operator " we actually mean three separate operations?
 
Kashmir said:
so when we apply such a " vector operator " we actually mean three separate operations?
You would get a Cartesian vector of kets,
$$
\hat{\mathbf{J}} = \mathbf{i} \hat{J}_x + \mathbf{j} \hat{J}_y + \mathbf{k} \hat{J}_z
$$
so
$$
\hat{\mathbf{J}} \ket{\phi} = \mathbf{i} \hat{J}_x \ket{\phi} + \mathbf{j} \hat{J}_y \ket{\phi}+ \mathbf{k} \hat{J}_z \ket{\phi}
$$

It is very rare to have to calculate the application of such vector operators directly. They usually appear in dot products, for instance
$$
\hat{J}^2 = \hat{\mathbf{J}} \cdot \hat{\mathbf{J}} = \hat{J}_x^2 + \hat{J}_y^2 + \hat{J}_z^2
$$
 
  • Like
Likes   Reactions: topsquark
DrClaude said:
You would get a Cartesian vector of kets,
$$
\hat{\mathbf{J}} = \mathbf{i} \hat{J}_x + \mathbf{j} \hat{J}_y + \mathbf{k} \hat{J}_z
$$
so
$$
\hat{\mathbf{J}} \ket{\phi} = \mathbf{i} \hat{J}_x \ket{\phi} + \mathbf{j} \hat{J}_y \ket{\phi}+ \mathbf{k} \hat{J}_z \ket{\phi}
$$

It is very rare to have to calculate the application of such vector operators directly. They usually appear in dot products, for instance
$$
\hat{J}^2 = \hat{\mathbf{J}} \cdot \hat{\mathbf{J}} = \hat{J}_x^2 + \hat{J}_y^2 + \hat{J}_z^2
$$
You wrote "##\hat{\mathbf{J}} \ket{\phi} = \mathbf{i} \hat{J}_x \ket{\phi} + \mathbf{j} \hat{J}_y \ket{\phi}+ \mathbf{k} \hat{J}_z \ket{\phi}## " on the rhs you've multiplied each ket by a euclidean vector which isn't an element of the field over which our ket space lies.

Can you please elaborate on that.
 
Last edited:
Kashmir said:
You wore "##\hat{\mathbf{J}} \ket{\phi} = \mathbf{i} \hat{J}_x \ket{\phi} + \mathbf{j} \hat{J}_y \ket{\phi}+ \mathbf{k} \hat{J}_z \ket{\phi}## " on the rhs you've multiplied each ket by a euclidean vector which isn't an element of the field over which our ket space lies.

Can you please elaborate on that.
It is what happens when you mix our 3D physical world with the Hilbert space of quantum states. Yes, ##\hat{\mathbf{J}} \ket{\psi}## doesn't correspond to a state ket, but it is not something that appears by itself in QM.
 
  • Like
Likes   Reactions: topsquark
  • #10
It's just a short-hand notation for three kets you get by operating with each of the ##\hat{J}_k## operators on that ket.

Further the kets are NOT the wave functions but abstract operators in an abstract Hilbert space. The wave functions are the "components" wrt. to the generalized position-operator eigenvectors, ##|\vec{x} \rangle##, which are the common eigenvectors of the three components of the position operator ##\hat{x}_j##. The wave function related to the state ket ##|\psi(t) \rangle## is
$$\psi(t,\vec{x})=\langle \vec{x}|\psi(t) \rangle,$$
where I assumed that we use the Schrödinger picture of time evolution.
 
  • Like
Likes   Reactions: Kashmir and topsquark
  • #11
vanhees71 said:
It's just a short-hand notation for three kets you get by operating with each of the ##\hat{J}_k## operators on that ket.

Further the kets are NOT the wave functions but abstract operators in an abstract Hilbert space. The wave functions are the "components" wrt. to the generalized position-operator eigenvectors, ##|\vec{x} \rangle##, which are the common eigenvectors of the three components of the position operator ##\hat{x}_j##. The wave function related to the state ket ##|\psi(t) \rangle## is
$$\psi(t,\vec{x})=\langle \vec{x}|\psi(t) \rangle,$$
where I assumed that we use the Schrödinger picture of time evolution.
"Further the kets are NOT the wave functions but abstract operators in an abstract Hilbert space".

Aren't Kets vectors of Hilbert space rather than operators?
 
  • Like
Likes   Reactions: vanhees71
  • #12
Of course, it must read "abstract vectors". Sorry for the confusion.
 
  • Like
Likes   Reactions: Kashmir

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
5K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K