A Vector Spaces Associated with Quark Modes in k-Space

Hamracek21
Messages
1
Reaction score
1
TL;DR Summary
Is there an article that talks about colored vector spaces that are associated with points in k-space?
My idea is as follows. Each mode of the quark field is characterized by a wave vector k. Each wave vector corresponds to a point in k-space. This set of points representing different modes forms a manifold. Each point in k-space can be assigned a three-dimensional vector space that represents the quark's color charge. Does anyone work with this model?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top