Hello!(adsbygoogle = window.adsbygoogle || []).push({});

In vector valued functions, I don't know how to find a curve's cartesian equation by inspecting its parametric ones...

For example I know from a worked example that if [tex]f: R^2 \rightarrow R[/tex] is given by f(x,y) = xy, and [tex]r(t) = \left[\begin{array}{ccccc} sin(t) \\ cos(t) \end{array}\right][/tex], then the Cartesian equation for this curve r is:x(which is just the unit circle).^{2}+y^{2}=1

But what if we had [tex]f: R^2 \rightarrow R[/tex] is given by f(x,y) = x^{2}y, and [tex]r(t) = \left[\begin{array}{ccccc} sin(t) \\ cos^2(t) \end{array}\right][/tex], ([tex]t \in [0, \pi/2[/tex])?

How do can I try to find its Cartesian equation?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Vector-Valued Functions

**Physics Forums | Science Articles, Homework Help, Discussion**