[x′1x′2]=[x1x2]+dθ[ξ1ξ2][x′1x′2]=[x1x2]+dθ[ξ1ξ2]
\begin{bmatrix} x'^1 \\ x'^2 \end{bmatrix} = \begin{bmatrix} x^1 \\ x^2 \end{bmatrix} + d\theta \begin{bmatrix} \xi^1 \\ \xi^2 \end{bmatrix}
where I have put dθdθd\theta instead of ϵϵ\epsilon because we are talking about rotations by an infinitesimal angle. But since we are talking about infinitesimal rotations, we must also have the equation x′=Rxx′=Rxx' = R x, which in matrix form is
[x′1x′2]=[R11R12R21R22][x1x2][x′1x′2]=[R11R12R21R22][x1x2]
\begin{bmatrix} x'^1 \\ x'^2 \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \begin{bmatrix} x^1 \\ x^2 \end{bmatrix}