PeterDonis
Mentor
- 49,365
- 25,403
PeterDonis said:It's easiest if you pick coordinates that match up with the rotation symmetry, e.g., polar coordinates on the 2-d Euclidean plane.
Oops! I just realized that I wrote down the matrices in Cartesian coordinates, not polar. Here are the correct matrices in polar coordinates.
The infinitesimal rotation matrix is
$$
\begin{bmatrix} 1 & 0 \\ \frac{d\theta}{r} & 1 \end{bmatrix}
$$
Applying this to the vector ##\begin{bmatrix} 1 \\ 0 \end{bmatrix}## still gives ##\begin{bmatrix} 1 \\ d\theta \end{bmatrix}## as before.
The finite rotation matrix is
$$
\begin{bmatrix} 1 & 0 \\ \frac{\theta}{r} & 1 \end{bmatrix}
$$
Applying this to ##\begin{bmatrix} 1 \\ 0 \end{bmatrix}## gives ##\begin{bmatrix} 1 \\ \theta \end{bmatrix}##, as expected (in polar coordinates). More generally, applying it to ##\begin{bmatrix} r \\ \phi \end{bmatrix}## gives ##\begin{bmatrix} r \\ \phi + \theta \end{bmatrix}##, so it does what it's supposed to, it rotates a vector by an angle ##\theta## without changing its length.