yungman
- 5,741
- 295
Just want to verify Laplace equation in rectangular coordinates that:
\nabla ^2 \vec E = 0
\Rightarrow\; \nabla^2 \vec E = \left ( \frac {\partial^2}{\partial x^2} +\frac {\partial^2}{\partial y^2} +\frac {\partial^2}{\partial z^2} \right ) ( \hat x E_x +\hat y E_y + \hat z E_z) = 0
\hbox {(1)}\;\Rightarrow \;\frac {\partial^2 \vec E}{\partial x^2} = 0,\;\frac {\partial^2 \vec E}{\partial y^2} = 0 \;\hbox { and } \frac {\partial^2 \vec E}{\partial z^2} = 0
And
\hbox {(2)}\; \nabla ^2 \vec E = \nabla^2_{xy}\vec E + \frac {\partial^2 \vec E}{\partial z^2} = 0 \;\hbox { where }\; \nabla^2_{xy}\vec E = \left ( \frac {\partial^2}{\partial x^2} +\frac {\partial^2}{\partial y^2} \right ) ( \hat x E_x +\hat y E_y + \hat z E_z)
\nabla ^2 \vec E = 0
\Rightarrow\; \nabla^2 \vec E = \left ( \frac {\partial^2}{\partial x^2} +\frac {\partial^2}{\partial y^2} +\frac {\partial^2}{\partial z^2} \right ) ( \hat x E_x +\hat y E_y + \hat z E_z) = 0
\hbox {(1)}\;\Rightarrow \;\frac {\partial^2 \vec E}{\partial x^2} = 0,\;\frac {\partial^2 \vec E}{\partial y^2} = 0 \;\hbox { and } \frac {\partial^2 \vec E}{\partial z^2} = 0
And
\hbox {(2)}\; \nabla ^2 \vec E = \nabla^2_{xy}\vec E + \frac {\partial^2 \vec E}{\partial z^2} = 0 \;\hbox { where }\; \nabla^2_{xy}\vec E = \left ( \frac {\partial^2}{\partial x^2} +\frac {\partial^2}{\partial y^2} \right ) ( \hat x E_x +\hat y E_y + \hat z E_z)
Last edited: