Verify Trig Identity: 1+cosx+cos2x=1/2+(sin5/2x)/(2sin1/2x) - Catlover0330

Click For Summary
SUMMARY

The identity 1 + cos(x) + cos(2x) = 1/2 + (sin(5/2x))/(2sin(1/2x)) has been verified through a series of trigonometric manipulations. The left side was transformed using identities such as the double-angle and triple-angle formulas, leading to a simplification that matched the right side. Key steps included applying the Pythagorean identity and product-to-sum identities to achieve the final equality. This verification demonstrates the utility of trigonometric identities in simplifying complex expressions.

PREREQUISITES
  • Understanding of trigonometric identities, including double-angle and triple-angle formulas.
  • Familiarity with the Pythagorean identity in trigonometry.
  • Knowledge of product-to-sum identities for sine and cosine functions.
  • Ability to manipulate algebraic expressions involving trigonometric functions.
NEXT STEPS
  • Study the derivation and applications of double-angle identities for sine and cosine.
  • Explore the triple-angle identity for sine and its implications in trigonometric proofs.
  • Learn about product-to-sum identities and their use in simplifying trigonometric expressions.
  • Practice verifying other trigonometric identities using similar techniques and transformations.
USEFUL FOR

Students studying trigonometry, educators teaching trigonometric identities, and mathematicians involved in algebraic manipulation of trigonometric functions.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Verify the following identity: 1 + cosx + cos2x = 1/2 + (sin5/2x) / (2sin1/2x)?

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Catlover0330,

We are given to verify:

$$1+\cos(x)+\cos(2x)=\frac{1}{2}+ \frac{\sin\left(\frac{5}{2}x \right)}{2 \sin\left(\frac{1}{2}x \right)}$$

Let's begin with the left side of the identity and rewrite it as follows:

$$1+\cos(x)+\cos(2x)=1+3+4\cos(x)+\cos(2x)-3-3\cos(x)$$

Using the identities:

$$8\cos^4(\theta)=3+4\cos(2\theta)+\cos(4\theta)$$

$$6\cos^2(\theta)=3+3\cos(2\theta)$$

We may write:

$$1+\cos(x)+\cos(2x)=1+8\cos^4\left(\frac{1}{2}x \right)-6\cos^2\left(\frac{1}{2}x \right)$$

Factor the right side:

$$1+\cos(x)+\cos(2x)=\left(4\cos^2\left(\frac{1}{2}x \right)-1 \right)\left(2\cos^2\left(\frac{1}{2}x \right)-1 \right)$$

Rewrite the first factor and use the double-angle identity for cosine on the second factor:

$$\cos(2\theta)=2\cos^2(\theta)-1$$

to obtain:

$$1+\cos(x)+\cos(2x)=\left(3-4\left(1-\cos^2\left(\frac{1}{2}x \right) \right) \right)\cos(x)$$

To the first factor on the right, apply the Pythagorean identity:

$$\sin^2(\theta)=1-\cos^2(\theta)$$

to obtain:

$$1+\cos(x)+\cos(2x)=\left(3-4\sin^2\left(\frac{1}{2}x \right) \right)\cos(x)$$

Multiply the right side by:

$$1=\frac{\sin\left(\frac{1}{2}x \right)}{\sin\left(\frac{1}{2}x \right)}$$

to obtain:

$$1+\cos(x)+\cos(2x)=\frac{\left(3\sin\left(\frac{1}{2}x \right)-4\sin^3\left(\frac{1}{2}x \right) \right)\cos(x)}{\sin\left(\frac{1}{2}x \right)}$$

To the first factor in the numerator on the right, apply the triple-angle identity for sine:

$$\sin(3\theta)=3\sin(\theta)-4\sin^3(\theta)$$

to obtain:

$$1+\cos(x)+\cos(2x)=\frac{\sin\left(\frac{3}{2}x \right)\cos(x)}{\sin\left(\frac{1}{2}x \right)}$$

To the numerator on the right, apply the product-to-sum identity:

$$\sin(\alpha)\cos(\beta)=\frac{\sin(\alpha-\beta)+\sin(\alpha+\beta)}{2}$$

to obtain:

$$1+\cos(x)+\cos(2x)=\frac{\sin\left(\frac{1}{2}x \right)+\sin\left(\frac{5}{2}x \right)}{2\sin\left(\frac{1}{2}x \right)}$$

Rewrite the right side using the algebraic property:

$$\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$$

to obtain:

$$1+\cos(x)+\cos(2x)=\frac{\sin\left(\frac{1}{2}x \right)}{2\sin\left(\frac{1}{2}x \right)}+\frac{\sin\left(\frac{5}{2}x \right)}{2\sin\left(\frac{1}{2}x \right)}$$

Divide out common factor in numerator and denominator of first term on the right:

$$1+\cos(x)+\cos(2x)=\frac{1}{2}+\frac{\sin\left( \frac{5}{2}x \right)}{2\sin\left(\frac{1}{2}x \right)}$$

Shown as desired.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
6
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K