MHB Verify Trig Identity: 1+cosx+cos2x=1/2+(sin5/2x)/(2sin1/2x) - Catlover0330

Click For Summary
The identity 1 + cos(x) + cos(2x) = 1/2 + (sin(5/2x) / (2sin(1/2x))) is verified through a series of trigonometric transformations. Starting from the left side, it is rewritten using known identities, leading to the expression involving cosines and sines. The right side is manipulated using the triple-angle identity for sine and product-to-sum identities, ultimately simplifying to match the left side. The verification process demonstrates the equality by systematically applying trigonometric identities and algebraic properties. The identity is confirmed as shown.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Verify the following identity: 1 + cosx + cos2x = 1/2 + (sin5/2x) / (2sin1/2x)?

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Catlover0330,

We are given to verify:

$$1+\cos(x)+\cos(2x)=\frac{1}{2}+ \frac{\sin\left(\frac{5}{2}x \right)}{2 \sin\left(\frac{1}{2}x \right)}$$

Let's begin with the left side of the identity and rewrite it as follows:

$$1+\cos(x)+\cos(2x)=1+3+4\cos(x)+\cos(2x)-3-3\cos(x)$$

Using the identities:

$$8\cos^4(\theta)=3+4\cos(2\theta)+\cos(4\theta)$$

$$6\cos^2(\theta)=3+3\cos(2\theta)$$

We may write:

$$1+\cos(x)+\cos(2x)=1+8\cos^4\left(\frac{1}{2}x \right)-6\cos^2\left(\frac{1}{2}x \right)$$

Factor the right side:

$$1+\cos(x)+\cos(2x)=\left(4\cos^2\left(\frac{1}{2}x \right)-1 \right)\left(2\cos^2\left(\frac{1}{2}x \right)-1 \right)$$

Rewrite the first factor and use the double-angle identity for cosine on the second factor:

$$\cos(2\theta)=2\cos^2(\theta)-1$$

to obtain:

$$1+\cos(x)+\cos(2x)=\left(3-4\left(1-\cos^2\left(\frac{1}{2}x \right) \right) \right)\cos(x)$$

To the first factor on the right, apply the Pythagorean identity:

$$\sin^2(\theta)=1-\cos^2(\theta)$$

to obtain:

$$1+\cos(x)+\cos(2x)=\left(3-4\sin^2\left(\frac{1}{2}x \right) \right)\cos(x)$$

Multiply the right side by:

$$1=\frac{\sin\left(\frac{1}{2}x \right)}{\sin\left(\frac{1}{2}x \right)}$$

to obtain:

$$1+\cos(x)+\cos(2x)=\frac{\left(3\sin\left(\frac{1}{2}x \right)-4\sin^3\left(\frac{1}{2}x \right) \right)\cos(x)}{\sin\left(\frac{1}{2}x \right)}$$

To the first factor in the numerator on the right, apply the triple-angle identity for sine:

$$\sin(3\theta)=3\sin(\theta)-4\sin^3(\theta)$$

to obtain:

$$1+\cos(x)+\cos(2x)=\frac{\sin\left(\frac{3}{2}x \right)\cos(x)}{\sin\left(\frac{1}{2}x \right)}$$

To the numerator on the right, apply the product-to-sum identity:

$$\sin(\alpha)\cos(\beta)=\frac{\sin(\alpha-\beta)+\sin(\alpha+\beta)}{2}$$

to obtain:

$$1+\cos(x)+\cos(2x)=\frac{\sin\left(\frac{1}{2}x \right)+\sin\left(\frac{5}{2}x \right)}{2\sin\left(\frac{1}{2}x \right)}$$

Rewrite the right side using the algebraic property:

$$\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$$

to obtain:

$$1+\cos(x)+\cos(2x)=\frac{\sin\left(\frac{1}{2}x \right)}{2\sin\left(\frac{1}{2}x \right)}+\frac{\sin\left(\frac{5}{2}x \right)}{2\sin\left(\frac{1}{2}x \right)}$$

Divide out common factor in numerator and denominator of first term on the right:

$$1+\cos(x)+\cos(2x)=\frac{1}{2}+\frac{\sin\left( \frac{5}{2}x \right)}{2\sin\left(\frac{1}{2}x \right)}$$

Shown as desired.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
9K
Replies
2
Views
2K
Replies
6
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
6K