Verifying Answers to True/False Questions about Matrices

  • Context: MHB 
  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrices
Click For Summary
SUMMARY

The discussion centers on verifying answers to true/false questions regarding matrix operations and properties. The first question involves the calculation of \(C = AB + B^{t}A^{t}\), where the participant's answers were confirmed as correct, particularly regarding the symmetry of \(C\) and the ability to calculate \(BA\). The second question pertains to a 3x3 non-invertible matrix \(A\), with the participant's answers also validated, except for a clarification needed on the rank condition. The consensus is that if rank(A)=1, the matrix after row operations will have at least one zero row.

PREREQUISITES
  • Understanding of matrix multiplication and properties
  • Knowledge of symmetric matrices
  • Familiarity with concepts of matrix rank and invertibility
  • Basic linear algebra terminology
NEXT STEPS
  • Study the properties of symmetric matrices in linear algebra
  • Learn about matrix rank and its implications on solutions of linear systems
  • Explore the conditions for matrix invertibility and non-invertibility
  • Review matrix operations and their computational rules
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as educators looking to clarify matrix properties and operations.

Yankel
Messages
390
Reaction score
0
Hello

I have been trying to solve a couple of true / false questions, and I am not sure my answers are correct, I would appreciate it if you could verify it.

The first question is:

A and B are matrices such that it is possible to calculate:

\[C=AB+B^{t}A^{t}\]

a. A and B are of the same order
b. C is symmetric
c. BA can be calculated
d. A and B are squared matrices
e. \[ABA^{t}\] can be calculated

My answers are: a - false, b - true , c - true, d - false e - false

The second question is:

A is a 3x3 not invertible matrix:

a. The system Ax=b has a unique solution for every vector b
b. The system Ax=b has infinite number of solutions for every vector b
c. The matrix kA is not invertible for every real number k.
d. If rank(A)=1, then A has at least one row of 0's.
e. There exist a vector b such that Ax=b has infinite number of solutions.

My answers are: a - false, b - false, c - true, d - true, e - true

Is there something wrong with my solutions ?

Thanks a million !
 
Physics news on Phys.org
Let's say $A$ is an $(m \times n)$ matrix and $B$ is $(n \times p)$. Then $AB$ is an $(m \times p)$ matrix and and $B^T A^T$ is $(p \times m)$. This implies that $p=m$ for it to be possible to add the two products together to make $C$ but that doesn't mean that $A$ and $B$ are necessarily of the same order. It seems to me that the two matrices could be square but don't have to be.

Assuming my reasoning is correct then your answers for the first one look good. They are all consistent too, which is good.
 
Yankel said:
Hello

I have been trying to solve a couple of true / false questions, and I am not sure my answers are correct, I would appreciate it if you could verify it.

The first question is:

A and B are matrices such that it is possible to calculate:

\[C=AB+B^{t}A^{t}\]

a. A and B are of the same order
b. C is symmetric
c. BA can be calculated
d. A and B are squared matrices
e. \[ABA^{t}\] can be calculated

My answers are: a - false, b - true , c - true, d - false e - false

The second question is:

A is a 3x3 not invertible matrix:

a. The system Ax=b has a unique solution for every vector b
b. The system Ax=b has infinite number of solutions for every vector b
c. The matrix kA is not invertible for every real number k.
d. If rank(A)=1, then A has at least one row of 0's.
e. There exist a vector b such that Ax=b has infinite number of solutions.

My answers are: a - false, b - false, c - true, d - true, e - true

Is there something wrong with my solutions ?

Thanks a million !
I would take a second look at 2d. Everything else looks good.
 
you are right, my mistake !

If rank(A)=1, the matrix after the elementary row operations has at least one 0 row, not the original A.

Thanks !
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K