MHB Verifying Answers to True/False Questions about Matrices

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrices
Yankel
Messages
390
Reaction score
0
Hello

I have been trying to solve a couple of true / false questions, and I am not sure my answers are correct, I would appreciate it if you could verify it.

The first question is:

A and B are matrices such that it is possible to calculate:

\[C=AB+B^{t}A^{t}\]

a. A and B are of the same order
b. C is symmetric
c. BA can be calculated
d. A and B are squared matrices
e. \[ABA^{t}\] can be calculated

My answers are: a - false, b - true , c - true, d - false e - false

The second question is:

A is a 3x3 not invertible matrix:

a. The system Ax=b has a unique solution for every vector b
b. The system Ax=b has infinite number of solutions for every vector b
c. The matrix kA is not invertible for every real number k.
d. If rank(A)=1, then A has at least one row of 0's.
e. There exist a vector b such that Ax=b has infinite number of solutions.

My answers are: a - false, b - false, c - true, d - true, e - true

Is there something wrong with my solutions ?

Thanks a million !
 
Physics news on Phys.org
Let's say $A$ is an $(m \times n)$ matrix and $B$ is $(n \times p)$. Then $AB$ is an $(m \times p)$ matrix and and $B^T A^T$ is $(p \times m)$. This implies that $p=m$ for it to be possible to add the two products together to make $C$ but that doesn't mean that $A$ and $B$ are necessarily of the same order. It seems to me that the two matrices could be square but don't have to be.

Assuming my reasoning is correct then your answers for the first one look good. They are all consistent too, which is good.
 
Yankel said:
Hello

I have been trying to solve a couple of true / false questions, and I am not sure my answers are correct, I would appreciate it if you could verify it.

The first question is:

A and B are matrices such that it is possible to calculate:

\[C=AB+B^{t}A^{t}\]

a. A and B are of the same order
b. C is symmetric
c. BA can be calculated
d. A and B are squared matrices
e. \[ABA^{t}\] can be calculated

My answers are: a - false, b - true , c - true, d - false e - false

The second question is:

A is a 3x3 not invertible matrix:

a. The system Ax=b has a unique solution for every vector b
b. The system Ax=b has infinite number of solutions for every vector b
c. The matrix kA is not invertible for every real number k.
d. If rank(A)=1, then A has at least one row of 0's.
e. There exist a vector b such that Ax=b has infinite number of solutions.

My answers are: a - false, b - false, c - true, d - true, e - true

Is there something wrong with my solutions ?

Thanks a million !
I would take a second look at 2d. Everything else looks good.
 
you are right, my mistake !

If rank(A)=1, the matrix after the elementary row operations has at least one 0 row, not the original A.

Thanks !
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top