1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Very Simple exponential growth problem

  1. Jan 17, 2009 #1
    1. It is estimated that x years from now the value of an acre of farmland will be increasing at the rate of [tex]\frac{0.4x^3}{sqrt(0.2x^4+8000)}[/tex] dollars per year. If the land is worth 500 per acre, how much will it be worth in 10 years?

    2. Use integral

    Since the the function of money of time is the integral of the rate given, i integrated the function 0.4x
    ^3/sqrt(0.2x^4+8000)....The answer therefore represents D(t) (Dollar Vs. Time)... Then I substitue 10 years into the function, I got how much is it worth in 10 years. but the question is, whats the use of the detail "now its worth 500 per acre"? should i add 500 to the answer i have now???? thanks!
  2. jcsd
  3. Jan 17, 2009 #2


    Staff: Mentor

    You have to include the constant of integration because you're working with an indefinite integral.

    For example,
    [itex]\int x^2 dx[/itex] = 1/3 x^3 + C

    Your function D(t) should be D(t) + C. D(0) + C should be equal to 500.
  4. Jan 17, 2009 #3


    User Avatar
    Staff Emeritus
    Science Advisor

    Since "now" equals "0 years from now", another way to do exactly what Mark44 said is to use a definite integral from 0 to 10- and then, since the integral from "0 to 0" is 0, add the $500. I suspect that is what Imlgrey meant originally.
  5. Jan 17, 2009 #4
    ok... It seems that i completely forgot the contant part :P
    now I integrated the function and got:
    D(x)= sqrt(0.2x^4+8000)+C
    D(0)= sqrt(8000)+C
    500= sqrt(8000)+C
    C= 410.557
    Then D(10) = sqrt(0.2*10^4+8000)+410.557= 510.557 acre ---- does it look right?

    ...also, if I do what Hallsofivy said, I would have

    and solving that, I got a totally different answer...Did I do anything wrong?
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Very Simple exponential growth problem
  1. Exponential Growth (Replies: 4)

  2. Exponential Growth (Replies: 6)