Graduate Volume constraint in micro-canonical derivation of statistical physics

Philip Koeck
Gold Member
Messages
801
Reaction score
229
Another question about the use of the micro-canonical ensemble in deriving distributions.

On the Wikipedia-page the authors mention that the total volume of the system has to be constant.
See: https://en.wikipedia.org/wiki/Bose–Einstein_statistics#Derivation_from_the_microcanonical_ensemble

On the other hand this statement is not used as a constraint or in any other way that I can see.

In a way it would however make sense to introduce a volume constraint in order to make sure the system is closed.
If V is not constant (meaning W is not zero), but U is constant, then Q is not zero and the system is not closed (at least for an ideal gas).

Does anybody know about volume constraints in the microcanonical picture?
 
Science news on Phys.org
In E = ∑niεi one has generally E = ∑niεi(N,V). Each εi changes in a continuous manner if V is vhanged infinetely slowly.
 
Last edited:
Lord Jestocost said:
In E = ∑niεi one has generally E = ∑niεi(N,V). Each εi changes in a continuous manner if V is vhanged infinetely slowly.
So the volume constraint is not used explicitly, but if the energy levels ei depend on the volume then the assumption of fixed energy levels implies a constant volume.
Is that correct?
 
One can see it in this way.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K