- 685
- 4
If exist a formula for calculate the area of a closed curve: http://en.wikipedia.org/wiki/Green's_theorem#Area_Calculation, so, there is a analogous for calculate the volume of a closed surface? I search but I not found...
First search result:I found nothing similar to this: http://en.wikipedia.org/wiki/Green's_theorem#Area_Calculation
This equation is really correct?[tex]V=\iint_{S}\!\!\!\!\!\!\!\!\!\!\!\subset\!\supset xdydz = \iint_{S}\!\!\!\!\!\!\!\!\!\!\!\subset\!\supset ydzdx = \iint_{S}\!\!\!\!\!\!\!\!\!\!\!\subset\!\supset zdxdy = \frac{1}{3}\iint_{S}\!\!\!\!\!\!\!\!\!\!\!\subset\!\supset (xdydz+ydzdx+zdxdy)[/tex]