MHB Volume of Solid of Revolution about Oblique Axis - Kyle's Question

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find the volume of the solid formed by revolving about y=x?

Find the volume of the solid formed by revolving the region bounded by the graphs of y=x and y=x^2 about the line y=x

Additional Details:

The book's given answer is pi/(30sqrt(2))

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Kyle,

Please see http://mathhelpboards.com/math-notes-49/solid-revolution-about-oblique-axis-rotation-6683.html for the development of the general formula:

$$V=\frac{\pi}{\left(m^2+1 \right)^{\frac{3}{2}}}\int_{x_i}^{x_f} \left(f(x)-mx-b \right)^2\left(1+mf'(x) \right)\,dx$$

We first find $x_i$ and $x_f$:

$$x^2=x$$

$$x(x-1)=0$$

Hence:

$x_i=0,\,x_f=1$

We are given:

$m=1,\,b=0,\,f(x)=x^2\implies f'(x)=2x$

Hence:

$$V=\frac{\pi}{2\sqrt{2}}\int_{0}^{1} \left(x^2-x \right)^2(1+2x)\,dx$$

Expanding the integrand, we have:

$$V=\frac{\pi}{2\sqrt{2}}\int_{0}^{1} 2x^5-3x^4+x^2 \,dx$$

Applying the FTOC, we find:

$$V=\frac{\pi}{2\sqrt{2}}\left[\frac{1}{3}x^6-\frac{3}{5}x^5+\frac{1}{3}x^3 \right]_{0}^{1}$$

$$V=\frac{\pi}{2\sqrt{2}}\left(\frac{1}{3}-\frac{3}{5}+\frac{1}{3} \right)=\frac{\pi}{2\sqrt{2}}\left(\frac{1}{15} \right)=\frac{\pi}{30\sqrt{2}}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top