Volume question related to piston movement in a hydraulic system

Click For Summary
SUMMARY

This discussion centers on the principles of fluid displacement in a hydraulic system involving two pistons with different cross-sectional areas. Piston 1, with an area of 2 cm², moves 30 cm, while Piston 2, with an area of 12 cm², moves 5 cm. The calculations confirm that the volume displaced by both pistons totals 60 cm³, which is consistent with the hydraulic principle of incompressibility. The confusion arises from the interpretation of displacement volume, which reflects the movement of fluid rather than an increase in fluid quantity.

PREREQUISITES
  • Understanding of hydraulic systems and Pascal's principle
  • Knowledge of fluid mechanics, specifically volume displacement
  • Familiarity with the formula for the area of a cylinder (Area = πr²)
  • Basic algebra for solving equations related to fluid movement
NEXT STEPS
  • Research Pascal's principle and its applications in hydraulic systems
  • Study the relationship between piston area and displacement in hydraulic mechanics
  • Learn about the properties of incompressible fluids in hydraulic applications
  • Explore practical examples of hydraulic systems in engineering and machinery
USEFUL FOR

Engineers, fluid mechanics students, and professionals working with hydraulic systems will benefit from this discussion, as it clarifies the concepts of fluid displacement and hydraulic principles.

TrpnBils
Messages
52
Reaction score
0
This came up in class today and based on the equations it makes sense, but logically I can't get my head around this.

Let's say we've got a hydraulic system with two pistons:
Piston 1: 2cm2
Piston 2: 12cm2

Piston 1 moves a distance of 21cm, which according to A1D1=A2D2 means that Piston 2 moves a distance of 3.5cm.

Given that the area of a cylinder is the area of the circle * height, that should mean that each piston displaces 42 cm3 of fluid.

----------

Now assume that in a second scenario, the same two pistons move a different distance than they did the first time. Piston 1 moves 30cm and Piston 2 moves 5cm. When you work out the volumes displaced by each piston this time, it comes out to be 60cm3.

Where does this extra volume come from? In a hydraulic system you're not adding fluid or taking it away, right? Even though the cylinders that the pistons move in are different sizes, there is still a finite amount of fluid between the two pistons since it isn't compressed.

What am I (and the other math/science people in the building) missing here?

Thanks!
 
Physics news on Phys.org
TrpnBils said:
Given that the area of a cylinder is the area of the circle * height, that should mean that each piston displaces 42 cm3 of fluid.
You meant volume, didn't you?


TrpnBils said:
Now assume that in a second scenario, the same two pistons move a different distance than they did the first time. Piston 1 moves 30cm and Piston 2 moves 5cm. When you work out the volumes displaced by each piston this time, it comes out to be 60cm3.

Where does this extra volume come from?

It's the amount of fluid that is moved within the system. One cylinder displaces 60 cm3, the other is displaced by 60 cm3. It's the amount of fluid that had to be moved (displaced) by the 1st piston in order to get the 2nd piston to move 5 cm. Therefore, the system has to have at least 60 cm3 to start with.
 
Yeah i meant volume there, sorry...

Ok, so does that mean that the numbers I'm getting for volume there are actually the volumes of the "empty" space behind piston #1? In other words, the difference between its starting position and its ending position?
 
TrpnBils said:
Yeah i meant volume there, sorry...

Ok, so does that mean that the numbers I'm getting for volume there are actually the volumes of the "empty" space behind piston #1? In other words, the difference between its starting position and its ending position?

Not exactly...
We don't necessarily know how much "empty space" there is behind cylinder #1 to start with.
The volume is a measurement of movement, or displacement (ahead of, or behind) the cylinder.

So if you move your 2 cm2 piston forward 30 cm within a cylinder, it's kind of like filling the cylinder with a longer piston. The area of the cylinder (ahead of the piston) is reduced by that area (which, as you stated, works out to a volume of 60 cm3). Being a hydraulic system, that cylinder was filled with a non-compressible liquid (one that takes extremely high pressures, above operating pressures, to compress). Since the volume of the cylinder was reduced, it can no long contain the same volume of fluid, so the fluid travels through the hose (or pipe) and begins filling the 2nd cylinder. Since 60 cm3 of fluid is being displaced, the 2nd cylinder is being filled with the same volume of fluid, thus moving the 2nd piston an amount necessary to equal that volume (in this case, 5 cm).

So you see, it's not that there is more fluid in the second scenario, it's just that more of the fluid (that was already there to begin with) was displaced.
 

Similar threads

Replies
49
Views
3K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
2
Views
5K
  • · Replies 5 ·
Replies
5
Views
11K
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K