VulcaBlack's Inhomogeneous Linear Recurrence Q&A

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Linear Recurrence
Click For Summary
SUMMARY

The discussion centers on solving the inhomogeneous linear recurrence relation defined as P(n) = 3*P(n-1) + 3n with the initial condition P(0) = 0. The closed-form solution is derived as P(n) = (3^(n+2) - 6n - 9) / 4. The proof is established through mathematical induction, confirming the validity of the solution. Additionally, alternative methods such as symbolic differencing and the method of undetermined coefficients are presented to derive the same closed-form solution.

PREREQUISITES
  • Understanding of inhomogeneous linear recurrence relations
  • Familiarity with mathematical induction
  • Knowledge of characteristic equations and roots
  • Experience with methods of symbolic differencing and undetermined coefficients
NEXT STEPS
  • Study the method of mathematical induction in detail
  • Learn about characteristic equations in linear recurrence relations
  • Explore symbolic differencing techniques for recurrence relations
  • Investigate the method of undetermined coefficients for solving differential equations
USEFUL FOR

Mathematicians, computer scientists, and students studying discrete mathematics or algorithm analysis will benefit from this discussion, particularly those interested in solving recurrence relations and understanding their applications.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Given the following recurrence relation, guess a closed-form solution:?

Given the following recurrence relation, guess a closed-form solution:
relation: P(n) = { 0 if n = 0
3*P(n-1) + 3n if n>0}

2. prove by induction

please help

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello VulcaBlack,

We are given the following inhomogeneous linear recurrence:

$$P_{n}=3P_{n-1}+3n$$ where $$P_0=0$$

If we are to "guess" a solution, we may look at the first several terms:

$$P_0=0=\frac{3^{0+2}-6\cdot0-9}{4}$$

$$P_1=3\cdot0+3\cdot1=3=\frac{3^{1+2}-6\cdot1-9}{4}$$

$$P_2=3\cdot3+3\cdot2=15=\frac{3^{2+2}-6\cdot2-9}{4}$$

$$P_3=3\cdot15+3\cdot3=54=\frac{3^{3+2}-6\cdot3-9}{4}$$

Thus, we may hypothesize that:

$$P_{n}=\frac{3^{n+2}-6n-9}{4}$$

We have already demonstrated the base case, and a few successive cases to be true, so let's now state the induction hypothesis $P_k$:

$$P_{k}=\frac{3^{k+2}-6k-9}{4}$$

Now, the recurrence relation tells us:

$$P_{k+1}=3P_{k}+3(k+1)$$

Using the induction hypothesis, this becomes:

$$P_{k+1}=3\left(\frac{3^{k+2}-6k-9}{4} \right)+3(k+1)$$

$$P_{k+1}=\frac{3^{k+3}-18k-27+12(k+1)}{4}$$

$$P_{k+1}=\frac{3^{(k+1)+2}-6(k+1)-9}{4}$$

We have derived $P_{k+1}$ from $P_{k}$ thereby completing the proof by induction.
 
I wish to demonstrate also two techniques for deriving the solution which requires neither guessing, nor proof by induction.

One way to derive a solution is through a technique called symbolic differencing, in which we may transform the recurrence into a homogenous one, and use the characteristic roots to obtain the closed form, and then use the initial values to determine the parameters. Let's begin with the given recurrence:

(1) $$P_{n}=3P_{n-1}+3n$$ where $$P_0=0$$

We may also write the recurrence as:

(2) $$P_{n+1}=3P_{n}+3(n+1)$$

Subtracting (1) from (2), we obtain:

(3) $$P_{n+1}=4P_{n}-3P_{n-1}+3$$

(4) $$P_{n+2}=4P_{n+1}-3P_{n}+3$$

Subtracting (3) from (4), we obtain:

$$P_{n+2}=5P_{n+1}-7P_{m}+3P_{n-1}$$

Now we have a homogeneous recurrence, whose associated characteristic equation is:

$$r^3-5r^2+7r-3=(r-3)(r-1)^2=0$$

Based on the roots and their multiplicities, we may give the closed form as:

$$P_n=k_1+k_2n+k_3\cdot3^n$$

Using the initial values, we may write:

$$P_0=k_1+k_3=0$$

$$P_1=k_1+k_2+3k_3=3$$

$$P_2=k_1+2k_2+9k_3=15$$

Solving this system, we find:

$$k_1=-\frac{9}{4},\,k_2=-\frac{3}{2},\,k_3=\frac{9}{4}$$

Hence, we have:

$$P_n=-\frac{9}{4}-\frac{3}{2}n+\frac{9}{4}\cdot3^n=\frac{3^{n+2}-6n-9}{4}$$

Another way to solve the recurrence is to use the method of undetermined coefficients. We first solve the associated homogeneous recurrence:

$$P_{n}-3P_{n-1}=0$$

which has the characteristic equation:

$$r-3=0$$

Thus, a general solution to the homogeneous equation is:

$$h_{n}=c_13^n$$

Now, since the inhomogeneous term in the original recurrence is $$3n$$, we seek a particular solution of the form:

$$p_{n}=An+B$$

where the parameters $A$ and $B$ are to be determined. Substituting this expression for $P_n$ into the original recurrence, we obtain:

$$(An+B)-3(A(n-1)+B)=3n$$

$$An+B-3(An-A+B)=3n$$

$$An+B-3An+3A-3B=3n$$

$$-2An+(3A-2B)=3n+0$$

Equating coefficients, we find:

$$-2A=3\,\therefore\,A=-\frac{3}{2}$$

$$3A-2B=0\,\therefore\,B=-\frac{9}{4}$$

And so we have:

$$p_{n}=-\frac{3}{2}n-\frac{9}{4}$$

Now, by the principle of superposition, we have:

$$P_n=h_n+p_n=c_13^n-\frac{3}{2}n-\frac{9}{4}$$

Now we may determine the parameter $c_1$ from the given initial value:

$$P_0=c_1-\frac{9}{4}=0\,\therefore\,c_1=\frac{9}{4}$$

And we now have the solution satisfying the recurrence as:

$$P_n=\frac{9}{4}3^n-\frac{3}{2}n-\frac{9}{4}=\frac{3^{n+2}-6n-9}{4}$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
2K