Ward identity from Ward-Takahashi identity?

Click For Summary
The discussion focuses on the relationship between the Ward-Takahashi identity and the conservation of current in quantum electrodynamics (QED). It establishes that the Ward-Takahashi identity can be applied beyond simple vertex functions to more complex physical processes involving virtual particles. By analyzing Feynman diagrams and utilizing the LSZ reduction formula, it is shown that if the external photon is on-shell, the corresponding amplitudes do not yield poles necessary for contributing to the S-matrix, leading to the conclusion that the amplitude must vanish. The conversation emphasizes the importance of these identities in ensuring consistency in QED calculations. Overall, the Ward-Takahashi identity serves as a foundational principle in demonstrating current conservation in various interactions.
center o bass
Messages
545
Reaction score
2
The Ward-Takahashi identity for the simplest QED vertex function states that

$$q_\mu \Gamma^\mu (p + q, p) = S^{-1}(p+q) - S^(p)^{-1}.$$

Often the 'Ward-identity' is stated as, if one have a physical process involving an external photon with the amplitude

$$M = \epsilon_\mu M^\mu$$

then

$$q_\mu M^\mu = 0$$
if q is the momentum of the external photon. One can argue on that the latter identity is true because of current conservation, but can one show that it follows from the Ward-Takahashi identity above? If so how?
 
Physics news on Phys.org
I agree with you on that one. Electron to a photon and an electron is not a physical prosess at all. However suppose that one of the the electrons are not on shell by being coupled to a subdiagram; one could for example have photon +electron coming in - vertex function - virtual electron - vertex function - photon +electron. Now one of the electrons are virtual with a momentum equal to the sum of the incoming photon and electron.
 
(sorry, I deleted my previous post because I realized you were looking for something more general. I think that what I'm writing below is a better answer to your question.)

Here's my understanding, which is based on a reading of Peskin and Schroeder section 7.4.

You start with your statement of the Ward-Takahashi identity, which is true for the electron vertex, and proceed to show that it is also true for any physical process, not just the simple 3-point vertex. That can be done either order-by-order by examining the topology of Feynman diagrams, or more generally by using the functional integral.

Next, you appeal to the argument in the LSZ reduction formula, which says that S-matrix elements are proportional to the residue of the pole of M on the mass shell of the external particles. If the M on the left is on-shell, then neither M(p+q) or M(p) on the right are on-shell, so neither have a pole in the right place to contribute to the S-matrix. Thus, the right-hand side is zero when you extract out the poles to compute the S-matrix.
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K