Graduate Wave direction and speed of propagation

Click For Summary
The discussion focuses on modifying a partial differential equation to change the direction of wave propagation from positive to negative along the z-axis. The original equation describes a wave traveling away from a surface, and the user seeks assistance in adjusting it so that the wave starts from infinity and moves toward the surface over time. Participants analyze the equation's components, noting the significance of terms like exp(-z/zeta) and the implications of boundary conditions. They also explore the effects of removing certain wave components on the overall behavior of the wave. The conversation emphasizes the need for clarity in the equation's transcription and the importance of visualizing the wave's movement through plots.
kasnay
Messages
10
Reaction score
1
TL;DR
Wave direction and speed propagation
I have an answer to a partial differential equation.
I have the equation coded as followed. I am trying to get this wave to propagate back after it hits a given z value. Can anyone help me figure out the direction in this equation?

upsilon=sqrt(3*((1-nu)/(1+nu))*(B/row));expansion=exp(-z/zeta).*(1-.5.*exp(-upsilon.*step(t)/zeta))-.5.*exp(-abs(z-upsilon.*step(t))/zeta).*sign(z-upsilon.*step(t));eta=(1-R)*((Q*Beta)/(A*zeta*C))*((1+nu)/(1-nu))*expansion;
 
Physics news on Phys.org
However I am not confident to have read or understood the equation you wrote well, only z, not x,y, seems to appear in it. So I suppose the direction which the equation determines would be z.
 
Sorry please let me clarify. We are ignoring the y and x planes. The wave is traveling in the z direction away from the surface as time increase. What I am trying to do is modify the equation so that the wave starts at infinity far away and moves toward the surface as time increases.
In essence I am trying to change my wave velocity to negative. I have tried inversing my terms with z and t but this creates an infinitely building wave.
 
Thanks. I have another preliminary observation that exp(-z/zeta) would diverge at z=##-\infty## for zeta > 0.
 
the pde that i worked through (which was also previously done by another) was defined that boundary conditions are from z=0 to z=infinity.
 
It is not clear what your function is. What is step? You need to write the equation as a simple function of z and t; i.e. eliminate constants by setting them to convenient values (for example upsilon=1, zeta=1 and eta=1*expansion or are z and t buried in these terms) and use the formatting tools on PF so that it is readable.
 
once again, i apologize. i have never used a forum for this before.
n(z,t)=(3/2)(1.5/.5)(e-z(1-.5e-3t)-.5e-abs(z-3t)*sgn(z-3t))
 
Let’s simplify further
m(z,t) = e-z(1-.5e-3t)-.5e-abs(z-3t)*sgn(z-3t)
= e-z-.5e-(z+3t)-.5e-abs(z-3t)*sgn(z-3t)
= f(z) + g(z+3t) + h(z-3t)
which is a spacially dependent background + a left going wave + a right going wave
Are you sure everything you wrote is transcribed correctly?
 
Last edited:
  • #10
So i didnt think to expand the exp(1-.5exp) so that actually made it easy to look at.
Your plot is in essence what i get when I use matlab. I programmed your simplified model and I get that same graph. A crest and trough that moves in the positive direction as time goes toward infinity.
So I also noticed what you are saying about the background left and right wave. Just playing around with it, when I remove the g(z+3t) The wave does not have a noticeable change. However If I remove the h(z-3t) then it just becomes a exponential with no movement in time.

I appreciate your help.
 
  • #12
Notice at t=0, g=h in the region of interest
For t>0, g quickly runs outside the region leaving its exponentially decaying tail while h moves to the right.
 
  • #13
sorry for the late responce, thank you for your help
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
5K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K