I Wave function using the time dependent Schrodinger equation

ThiagoSantos
Messages
2
Reaction score
1
Given a wavefunction ψ(x, 0) of a free particle at initial time t=0, I need to write the general expression of the function at time t. I used a Fourier transform of ψ(x, t) in terms of ψ(p, t), but, i don't understand how to use green's functions and the time dependent schrodinger equation to get my answer. What's the relationtship between them?
 
Physics news on Phys.org
The time-dependent Schrödinger equation reads
$$\mathrm{i} \hbar \partial_t \psi(x,t)=\hat{H} \psi(x,t).$$
Let's assume for simplicity that
$$\hat{H}=\frac{\hat{p}^2}{2m} + V(\hat{x}),$$
i.e., that ##\hat{H}## is not explicitly time dependent. Then the formal solution of the equation above is
$$\psi(x,t)=\exp \left (-\frac{\mathrm{i} \hat{H} t}{\hbar} \right) \psi(x,0).$$
This you can write in the form
$$\psi(x,t)=\int_{\mathbb{R}} \mathrm{d} x' \left \langle x \left |\exp \left (-\frac{\mathrm{i} \hat{H} t}{\hbar} \right) \right| x' \right \rangle \psi(x',0)= \int_{\mathbb{R}} \mathrm{d} x' G(x,x',t) \psi(x',0),$$
i.e., the propator is
$$G(x,x',t)=\left \langle x \left |\exp \left (-\frac{\mathrm{i} \hat{H} t}{\hbar} \right) \right| x' \right \rangle.$$
Usually it's of course difficult to really calculate the propagator.

For a free particle, where ##\hat{H}=\hat{p}^2/(2m)## you can use the momentum eigenstates to evaluate it:
$$G(x,x',t)=\int_{\mathbb{R}} \mathrm{d} p \langle x |\exp[-\mathrm{i} \hat{p}^2 t/(2m \hbar)]|p \rangle \langle p|x' \rangle.$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top