I Wave function using the time dependent Schrodinger equation

Click For Summary
To determine the wavefunction ψ(x, t) of a free particle at time t using the time-dependent Schrödinger equation, one can express it as ψ(x, t) = exp(-iHt/ħ)ψ(x, 0), where H is the Hamiltonian operator. For a free particle, the Hamiltonian is given by H = p²/(2m), leading to the propagator G(x, x', t) = ⟨x|exp(-iHt/ħ)|x'⟩. This propagator can be evaluated using momentum eigenstates, resulting in G(x, x', t) = ∫ dp ⟨x|exp[-ip²t/(2mħ)]|p⟩⟨p|x'⟩. Calculating the propagator directly can be complex, but it is essential for obtaining the wavefunction at time t.
ThiagoSantos
Messages
2
Reaction score
1
Given a wavefunction ψ(x, 0) of a free particle at initial time t=0, I need to write the general expression of the function at time t. I used a Fourier transform of ψ(x, t) in terms of ψ(p, t), but, i don't understand how to use green's functions and the time dependent schrodinger equation to get my answer. What's the relationtship between them?
 
Physics news on Phys.org
The time-dependent Schrödinger equation reads
$$\mathrm{i} \hbar \partial_t \psi(x,t)=\hat{H} \psi(x,t).$$
Let's assume for simplicity that
$$\hat{H}=\frac{\hat{p}^2}{2m} + V(\hat{x}),$$
i.e., that ##\hat{H}## is not explicitly time dependent. Then the formal solution of the equation above is
$$\psi(x,t)=\exp \left (-\frac{\mathrm{i} \hat{H} t}{\hbar} \right) \psi(x,0).$$
This you can write in the form
$$\psi(x,t)=\int_{\mathbb{R}} \mathrm{d} x' \left \langle x \left |\exp \left (-\frac{\mathrm{i} \hat{H} t}{\hbar} \right) \right| x' \right \rangle \psi(x',0)= \int_{\mathbb{R}} \mathrm{d} x' G(x,x',t) \psi(x',0),$$
i.e., the propator is
$$G(x,x',t)=\left \langle x \left |\exp \left (-\frac{\mathrm{i} \hat{H} t}{\hbar} \right) \right| x' \right \rangle.$$
Usually it's of course difficult to really calculate the propagator.

For a free particle, where ##\hat{H}=\hat{p}^2/(2m)## you can use the momentum eigenstates to evaluate it:
$$G(x,x',t)=\int_{\mathbb{R}} \mathrm{d} p \langle x |\exp[-\mathrm{i} \hat{p}^2 t/(2m \hbar)]|p \rangle \langle p|x' \rangle.$$
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...

Similar threads