Wave packet vs relative probability

Click For Summary
The discussion highlights the limitations of the one-dimensional Schrödinger equation solution for free particles, which fails to meet normalization requirements. Two approaches to address this issue are presented: creating localized wave packets through superposition and interpreting the wave function as relative probabilities. The preference for wave packets over relative probabilities is emphasized, as wave packets align more closely with classical concepts of localized particles and are applicable in a wider range of physical scenarios. This preference stems from the desire for a more intuitive understanding of particle behavior. Ultimately, wave packets provide a more practical framework for analyzing quantum systems.
xboy
Messages
133
Reaction score
0
For a free particle,the one dimensional Schrodinger's equation gives a solution of the form Ae^i(kx - wt).This solution does not meet the normalisation requirement.According to Bransden-Joachain's texr,there are 2 ways out of this difficulty.One is to superpose and form localised wave packets.The other is to
"give up the concept of absolute probabilities when dealing with wave functions such as (above) which are not square integrable.Instead |psi(r,t)|^2dr is interpreted as the relative probability of finding the electron at time t in a volume element dr centred around r,so that the ratio |psi(r1,t)|^2 / |psi(r2,t)|^2 gives the probability of finding the particle within volume element centred around r=r1,compared with that of finding it within the same volume element at r=r2.For theparticular case of the plane wave we see that...there is equal chance of finding the particle at any point."

My question is,why do we prefer the first solution(wave packets) to the second one(relative probabilities)?
 
Physics news on Phys.org
The wave packet solution is closer to the classical picture of a localized particle. It also applies to more physical situations.
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
6K
  • · Replies 27 ·
Replies
27
Views
3K