- #1
- 91
- 0
What do we actualy mean a matter or particle having both wave and matter properties, and do the electrons occilate that means it has both up and down with the translational motion around the atom!
What do we actualy mean a matter or particle having both wave and matter properties, and do the electrons occilate that means it has both up and down with the translational motion around the atom!
Electrons are particles. So are photons. The wavelike properties that these particles exhibit are a result of the particle's wavefunction -- the fact that these particles obey probabilistic mechanics manifests itself in the wave-like properties that we observe in macroscopic experiments. There's really nothing funny going on.What do we actualy mean a matter or particle having both wave and matter properties, and do the electrons occilate that means it has both up and down with the translational motion around the atom!
Electrons are particles. So are photons. The wavelike properties that these particles exhibit are a result of the particle's wavefunction -- the fact that these particles obey probabilistic mechanics manifests itself in the wave-like properties that we observe in macroscopic experiments. There's really nothing funny going on.
Things that behave as waves and particles depending on if they are being observed. Things that seem to exist in some ethereal manner whereby they pop in and out of our existence that we cannot identify both speed and position of . Transfer of information faster than light speed seemingly over any distances . Nothing funny going on has to be the greatest understatement of all time .
Hallow no one is giving me answers seriously, may anyone help me have a picture of the wave particle duality and probably giving in detail the uncertainity principle and the wave function as been stated in some replies
Really , could you shed some light on the results of the aspect experiments then and explain Bells ineqaulity perhaps i have misunderstood them . Also from your reply it also appears I do not understand the uncertainty principle could you also expand on that .
Godwin Kessy I will do my best. In certain circumstances particles can exhibit the behaviour of both waves and particles and it rather depends on what one is seeking to measure that determines which. |The obvious example being light which moves as a wave but is comprised of photons.
The uncertainty principle states that we cannot accurately measure certain pairs of physical properties of particles for example position and velocity or energy and time. The more accurately we measure one of the pair the less accurately we can measure the other.
These principles appear to me to be predicated on the rather ethereal life of particles which appear to reside in a universe of total uncertainty whereby one can only gauge the likelihood of their appearance in our physical universe. Furthermore they appear to be able to travel on all paths between points which given that they travel at C and therefore have infinite time available seems quite possible. It’s only when we look for them that this behavior is modified and they appear in our world.
As others have said the uncertainty principle is just a statistical expression of where a particle may be and how fast it may be moving. When determining the position or momentum of the particle in question we must "look" for it through the agency of light which disturbs the particle in such a way that the complimentary measurement will be a probability.
The wave particle duality comes from the famous double slit experiment in which electron particles as well as photons were shot at a wall with two slits and a detector on the other side. When dealing with particles one would expect to see two lines of particles on the detector, however an interference pattern is present which is characteristic of waves. This happens even when there is only one particle traveling through the slits. If any of this is incorrect please set me straight. Hope that helps the OP.
Joe
I gave you a serious answer.Hallow no one is giving me answers seriously, may anyone help me have a picture of the wave particle duality and probably giving in detail the uncertainity principle and the wave function as been stated in some replies
Most of what you just wrote down there doesn't make any sense. There's lots funny going on with your statements. My point, if you read my post ever so carefully, is that wave particle duality is not some spooky statement regarding our inability to assign an identity to subatomic particles.Things that behave as waves and particles depending on if they are being observed. Things that seem to exist in some ethereal manner whereby they pop in and out of our existence that we cannot identify both speed and position of . Transfer of information faster than light speed seemingly over any distances . Nothing funny going on has to be the greatest understatement of all time .
The uncertainty principle is primarily a relationship on the statistical results of a measurement. We are perfectly able to measure the position and momentum of a particle simultaneously.
In Bell's inequality, there is no means for us to set the entangled state to our liking. There is no means for us to transfer information.
.
Particles do not follow all possible paths nor are they allowed to violate special relativity (any formulation that allows such violation is one that does not include special relativity, most of quantum mechanics uses non-relativistic theory). The path formulations are a mathematical tool and are not considered to have any true physical correlation. Particles can appear and disappear by virtue of special relativity. This does not have anything to do with quantum mechanics. If we have a system with a certain amount of energy, then that energy can convert into a particle by virtue of the Relativity's equivalence principle. If we couple special relativity with quantum mechanics, then we simply provide a mechanism for the creation and annihilation of particles via the equivalence principle. The only really quantum behavior here lies with virtual particles. Virtual particles are particles that are created from and annihilated into energy on very short time scales to the effect that they are not considered to be real particles. This occurs because observation of a system over a very small time interval requires a large variance in the observed energy states by virtue of the uncertainty principle. Since the energy can vary, then the system could momentarily have a large enough energy to create a particle, but since this energy spike is fleeting, so is the particle's lifetime. But at the same time, virtual particles are another mathematical tool. They are not considered to be truly physical and it is important to note that we are not saying that a bunch of energy is created from nothing when we consider these short-term time spans, but that variance in the observed energy is large.
In quantum mechanics, the Heisenberg uncertainty principle states that certain pairs of physical properties, like position and momentum, cannot both be known to arbitrary precision. That is, the more precisely one property is known, the less precisely the other can be known. Could you expand on the manner in which you have managed to ovwercome this please.
I did not suggest that we could transmit information faster than light by means of entanglement merely that it has been demonstrated to have occurred in the aspect experiments and others that followed
in QED, light (or any other particle like an electron or a proton) passes over every possible path allowed by apertures or lenses. The observer (at a particular location) simply detects the mathematical result of all wave functions added up.
In quantum mechanics, the Heisenberg uncertainty principle states that certain pairs of physical properties, like position and momentum, cannot both be known to arbitrary precision. That is, the more precisely one property is known, the less precisely the other can be known. Could you expand on the manner in which you have managed to ovwercome this please.
I did not suggest that we could transmit information faster than light by means of entanglement merely that it has been demonstrated to have occurred in the aspect experiments and others that followed
in QED, light (or any other particle like an electron or a proton) passes over every possible path allowed by apertures or lenses. The observer (at a particular location) simply detects the mathematical result of all wave functions added up.
Hallow! I gec am almost out of phase may you people help me out slowly, i am seriously in need to understand out! We are using so unfamiliar terms with no descriptions! Ie relativity,
What do we actualy mean a matter or particle having both wave and matter properties, and do the electrons occilate that means it has both up and down with the translational motion around the atom!
What about experiments suggesting single particles can interfere with themselves and yield interference patterns?(we also have the experiments that say a particle, even a molecule, can be in two places at the same time, which would suggest how it could interfere with itself by passing through two slits at once.)When we do experiments with single electrons or photons, they always are detected as particles. i.e. they are localized in space and time. For example, if the particles are detected on a fluorescent screen they appear as dots, one dot at a time for each particle. There is no evidence of any wave behavior in a single dot.
The amount of left-over uncertainty can never be reduced below the limit set by the uncertainty principle, no matter what the measurement process...
Today, logical positivism has become unfashionable in many cases, so the explanation of the uncertainty principle in terms of observer effect can be misleading. For one, this explanation makes it seem to the non positivist that the disturbances are not a property of the particle, but a property of the measurement process— the particle secretly does have a definite position and a definite momentum, but the experimental devices we have are not good enough to find out what these are. This interpretation is not compatible with standard quantum mechanics. In quantum mechanics, states which have both definite position and definite momentum at the same time just don't exist.
This was a surprising prediction of quantum mechanics, and not yet accepted. Many people would have considered it a flaw that there are no states of definite position and momentum. Heisenberg was trying to show this was not a bug, but a feature—a deep, surprising aspect of the universe.
Since most hidden variable theories assume nonlocality and keep CFD, since one of the two has to go(according to the experimental data), as these [hidden variable theories] are usually dismissed, I assume what was tossed out of mainstream quantum physics was CFD and locality was kept in(If I recall correctly, I've heard locality was kept for compatibility with relativity.) . Such that all the unmeasured properties are believed to not be definitive for something that has not been measured(aka, if we exaggerate or use metaphor: "the moon is not there when you don't look."). It seems more sensible to throw out locality and keep CFD, and sort out any conflicts that may arise with regards to relativity.Counterfactual definiteness is a basic assumption, which, together with locality, leads to Bell inequalities. In their derivation it is explicitly assumed that every possible measurement, even if not performed, would have yielded a single definite result. Bell's Theorem actually proves that every quantum theory must violate either locality or CFD.
What about experiments suggesting single particles can interfere with themselves and yield interference patterns?(we also have the experiments that say a particle, even a molecule, can be in two places at the same time, which would suggest how it could interfere with itself by passing through two slits at once.)
As for the description of uncertainty, according to wiki
If we take this to be right, even an individual particle cannot have both properties at the same time even if it is not measured, it exists without both these things being definitive.
According to one of the last https://www.physicsforums.com/showthread.php?t=57528" the data suggests that each individual particle must be interfering with itself to give the observed results. It seems you agree, that it can interfere with itself, so it indirectly shows that even individual single photons and particles can showcase wavelike behavior.There is no contradiction ... the photon is always *detected* at a single point (i.e. pixel). You do not detect interference patterns for a single experiment with a single photon ... interference patterns are built up out of dots (i.e. single photon detection events), over a series of repeated experiments, each with a single photon.
So yes, as long as the experiment does not detect which-path information, then each single photon travels along both paths, interferes with itself, and is detected at some point on the detector screen. The probability of it being detected at any given point is determined by the quantum interference.
Ifhttp://en.wikipedia.org/wiki/Renninger_negative-result_experiment" [Broken] with a detector can disturb a particle and thus bring uncertainty, how can you be sure that your particular interaction with a particular detector is not affected by the lack of interactions with other parts disturbing the particle?That is correct for undetected particles (according to standard QM), however it is *not* correct for particles that have interacted with a detector. When you measure a single particle, you measure it's properties with a precision that is determined *only* by the measurement precision, which can be taken to be infinitely good for the sake of this argument. There is *no* fundamental limit on the measurement precision for a single particle .. this is because the phenomenon of quantum decoherence that occurs upon detection causes the system (particle and detector) to be resolved into a single measurement state (i.e. eigenstate of the property being measured).
If the particle happened to exist in a single eigenstate of the measured property before measurement, then only that particular eigenstate will be measured, no matter how many times the experiment is repeated for identical conditions. However, if the particle existed in a superposition of eigenstates (as is true in the case we are considering for position and momentum measurements), then a series of measurements will observe a range of results, where the distribution is determined by the probability envelope of the superposition, which is in turn limited according to the HUP.
According to one of the last https://www.physicsforums.com/showthread.php?t=57528" the data suggests that each individual particle must be interfering with itself to give the observed results. It seems you agree, that it can interfere with itself, so it indirectly shows that even individual single photons and particles can showcase wavelike behavior.
Ifhttp://en.wikipedia.org/wiki/Renninger_negative-result_experiment" [Broken] with a detector can disturb a particle and thus bring uncertainty, how can you be sure that your particular interaction with a particular detector is not affected by the lack of interactions with other parts disturbing the particle?
To quote the chicken farmer from Napoleon Dynamite, "I don't understand a word you just said."
Seriously though ... I really don't understand how any of that is relevant to what we were discussing. Yes, there are many different perturbations that may end up changing the particular value observed for a given measurement. My point was that there is only ever *one* value that is measured (and with arbitrary precision).
@flashprogram: I made this same error of reasoning a few months ago (can't find the thread), and was roundly spanked. SpectraCat is giving you a very good answer. The wavefunction interferes with itself, but to detect the interference requires the "image" (classic pattern) be built dot by dot. If a single particle is interfering with itself, no test thus far can show that WITH a single particle. The wavefunction, yes, the particle, no.
Wave Particle Duality comes as a result of De Broglie's hypothesis that matter has an associated wavelength. It has been verified that matter does in fact have a wavelength associated with it, since interference effects from electron scattering has been observed.
Obviously, this is somewhat strange. Personally I find that it is natural that matter has a wavelength (dependent on momentum) because E = mc^2, and also from Fourier series descriptions of particles. E = mc^2 says that all waves have an associated mass (since observable waves must have energy), and Fourier series say that the probability density of finding a particle as a function of position can be represented as a wave.
What schroedinger did was to simply say that there is a wave function associated with each particle. This came from two quantum principles:
(1) E = h[tex]\nu[/tex]
(2) P = h[tex]/[/tex][tex]\lambda[/tex]
Using (1) the time frequency of the wave can be found (i.e. the "speed" of propagation)
Using (2) the spatial frequency of the wave can be found.
By adding many waves together, it is possible to create many different shapes of probability distributions. The end result however is Heisenberg's uncertainty principle:
It turns out that the Schroedinger equation describes the probability density of finding a particle as a function of time and space. If you localize the wave to a single point, then you don't know what the wavelengths are. Identically, if you know the wavelength exactly, then the wave function is so spread out that it is impossible to tell where the particle is if you were to observe it. This is all of course according to a wave function mechanics.
According to one of the last https://www.physicsforums.com/showthread.php?t=57528" the data suggests that each individual particle must be interfering with itself to give the observed results. It seems you agree, that it can interfere with itself, so it indirectly shows that even individual single photons and particles can showcase wavelike behavior.
There is no wave-like behavior until many photons have been detected and we observe the probability distribution of those many photons. Quantum mechanics is about probabilities and it is the probability distribution that we identify as an interference pattern.
It might help to read A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Exawa,
“Demonstration of single electron build-up of an interference pattern”, Am. J. Phys. 57, 117-120 (1989).
This experiment is discussed at length in Mark P. Silverman, "More Than One Mystery" (Springer-Verlag, New York, 1995), pp. 1-8, and also in George Greenstein and Arthur G. Zajonc, "The Quantum Challenge" (Jones and Bartlett, Boston, 1997), pp. 1-4.
If we consider only what is observed in real experiments, then, in my opinion, much of the confusion goes away. It is when we try to explain what is happening, that things get "weird". The Tonomura paper cited above describes a real experiment. There are many others, since it is now commonplace to do experiments where there is only one photon in the apparatus at anyone time. None of the experiments show a single photon interfering with itself, passing through two slits at the same time, smearing itself all over a detection screen, or doing other strange things often attributed to it. Such comments are our attempts to explain "what the results really mean." If something cannot be verified experimentally, we should be very suspicious. And, unfortunately, the experimental results do not pertain to the photon before it is detected.
As for the description of uncertainty, according to wiki
If we take this to be right, even an individual particle cannot have both properties at the same time even if it is not measured, it exists without both these things being definitive. The wiki article has even more strange quantum behavior, such as that the failure to measure(e.g. it fails to hit the detector, if I'm not mistaken.), failure to interact with something, can also disturb the particle.
We need to discuss quantum uncertainty. Spectracat has it right! The accuracy of a measurement is determined by the skill of the experimenter and the limitations of his apparatus. We can imagine an ideal experiment that yields exact values for the observable being measured and not be in conflict with quantum theory.
Classically, if we repeat the experiment we always get the same experimental result; classical physics is deterministic and the result is certain.
Not so in a quantum experiment! When we repeat the quantum experiment, in general, we get a different result, even if everything is done perfectly. If we repeat the experiment many times then we get the entire eigenvalue spectrum of the observable being measured.
The probability distribution of those results can be used to calculate the uncertainty in those results. Quantum mechanics is indeterminate and there is an uncertainty in the measured observable.
Of course, there is the special case (where the particle is in an eigenstate) where the experiment is set up so we always get the same result, as in the classical case. In this special quantum case there is no uncertainty.