eaglelake
- 131
- 0
flashprogram said:According to one of the last https://www.physicsforums.com/showthread.php?t=57528" the data suggests that each individual particle must be interfering with itself to give the observed results. It seems you agree, that it can interfere with itself, so it indirectly shows that even individual single photons and particles can showcase wavelike behavior.
There is no wave-like behavior until many photons have been detected and we observe the probability distribution of those many photons. Quantum mechanics is about probabilities and it is the probability distribution that we identify as an interference pattern.
It might help to read A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Exawa,
“Demonstration of single electron build-up of an interference pattern”, Am. J. Phys. 57, 117-120 (1989).
This experiment is discussed at length in Mark P. Silverman, "More Than One Mystery" (Springer-Verlag, New York, 1995), pp. 1-8, and also in George Greenstein and Arthur G. Zajonc, "The Quantum Challenge" (Jones and Bartlett, Boston, 1997), pp. 1-4.
If we consider only what is observed in real experiments, then, in my opinion, much of the confusion goes away. It is when we try to explain what is happening, that things get "weird". The Tonomura paper cited above describes a real experiment. There are many others, since it is now commonplace to do experiments where there is only one photon in the apparatus at anyone time. None of the experiments show a single photon interfering with itself, passing through two slits at the same time, smearing itself all over a detection screen, or doing other strange things often attributed to it. Such comments are our attempts to explain "what the results really mean." If something cannot be verified experimentally, we should be very suspicious. And, unfortunately, the experimental results do not pertain to the photon before it is detected.
Last edited by a moderator: