MHB We can find two irrational numbers x and y to make xy rational,true or false

AI Thread Summary
It is true that two irrational numbers x and y can be found such that x^y is rational. A well-known example is when x = y = √2; if √2^√2 is rational, the proof is complete. If it is irrational, then setting x = √2^√2 and y = √2 leads to x^y = 2, which is rational. Another example provided is √2^(log₂9) = 3, further supporting the claim. Thus, the statement holds true with valid examples demonstrating the existence of such irrational numbers.
Albert1
Messages
1,221
Reaction score
0
we can find two irrational numbers $x$ and $y$
to make $x^y$ rational,true or false statement?
if true then find else prove it .
 
Last edited:
Mathematics news on Phys.org
Albert said:
we can find two unreasonable numbers $x$ and $y$
to make $x^y$ reasonable,true or false statement?
if true then find else prove it .

what is a reasonable number ?
 
kaliprasad said:
what is a reasonable number ?
sorry it should be edited as :
$x,y $ irrational numbers
$ x^y$ rational number
 
Here's a famous example. Let x= y= \sqrt{2}. Either x^y= \sqrt{2}^\sqrt{2} is irrational or it is rational. If it is rational we are done. If it is irrational, let x= \sqrt{2}^\sqrt{2} and y= \sqrt{2}. Then x^y= (\sqrt{2}^\sqrt{2})^\sqrt{2}= \sqrt{2}^{(\sqrt{2}\sqrt{2})}= \sqrt{2}^2= 2. In either case, there exist two irrational numbers, x and y, such that x^y is rational.
 
Another example is $\sqrt{2}^{\log_29}=3$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top