MHB Well-defined function that doesn't satisfy IVT

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
The function f defined as f(x) = x^2 for x in the rational numbers is well-defined because squaring a rational number results in another rational number. It is confirmed that f(1) equals 1 and f(3) equals 9. However, the function does not satisfy the intermediate value theorem on the interval [1,3] intersected with the rationals, as there is no rational c such that f(c) equals 2. The discussion emphasizes the importance of explicitly stating that the output of f is rational for any rational input. Overall, the points made clarify the properties of the function and its limitations regarding the intermediate value theorem.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Let $f:\mathbb{Q}\rightarrow \mathbb{Q}$, $f(x):=x^2$.
Show that :
(i) $f$ is well-defined.
(ii) $f(1)=1$, $f(3)=9$
(iii) $f$ does not satisfy the intermediate value theorem (e.g. not on $[1,3]\cap \mathbb{Q}$) For (i) do we just say that $f$ is well-defined from $\mathbb{Q}$ to $\mathbb{Q}$, since each input $x$ has a unique output $x^2$ ?

For (ii) we have that $f(1)=1^2=1$ and $f(3)=3^2=9$. That's it?

For (iii) we have that $1=f(1)<2<f(3)=9$. So there must be $c\in (1,3)$ such that $f(c)=2 \Rightarrow c^2=2 \Rightarrow c=\pm \sqrt{2}\notin \mathbb{Q}$. Is that correct?

:unsure:
 
Physics news on Phys.org
Hey mathmari!

It looks all correct to me. (Nod)
 
For 1 you should explicitly show that for any rational number, x, x2 is a RATIONAL number.
 
Country Boy said:
For 1 you should explicitly show that for any rational number, x, x2 is a RATIONAL number.
The rational numbers are closed for multiplication, so just saying that if $x$ is rational, then $x^2$ is also rational should be enough.
 
Thank you! (Smile)
 
Klaas van Aarsen said:
The rational numbers are closed for multiplication, so just saying that if $x$ is rational, then $x^2$ is also rational should be enough.
Yes, it is enough. My point was that mathman, in the original post, said only "since each input x has a unique output x2", not that that output was a rational number.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K