MHB What are all the elements in P[P{P{A}}] and how many elements are there?

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
The discussion focuses on calculating the number of elements in the set P[P{P(A)}] where A={1}. The cardinality of the power set is determined using the formula |P(M)|=2^|M|, leading to |P(A)|=2, |P(P(A))|=4, and |P(P(P(A)))|=16. The elements of P(A) are identified as {∅, {1}}, and P(P(A)) includes four subsets. The final set P(P(P(A))) consists of 16 distinct subsets, which are detailed through substitutions of the previously defined elements.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

If A={1}.FIND NUMBER OF ELEMNTS IN P[P{P(A)}].also write all the elements?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
If $|M|$ denotes the cardinal of the set $M$ then, according to a well known property $\left|\mathcal{P}(M)\right|=2^{|M|}$. Then, $$\left|\mathcal{P}(A)\right|=2^{|A|}=2^1=2,\left|\mathcal{P}(\mathcal{P}(A))\right|=2^{ \left|\mathcal{P}(A)\right|}=2^2=4,\\\left |\mathcal{P}(\mathcal{P}(\mathcal{P}(A)))\right|=2^{ \left |\mathcal{P}(\mathcal{P}(A))\right|}=2^4=16$$
We have $\mathcal{P}(A)=\left \{\emptyset,\{1\}\right \}$ and $\mathcal{P}(\mathcal{P}(A))=\left \{\emptyset,\left \{\emptyset \right\},\left \{\{1\} \right\},\left \{\emptyset,\{1\} \right\} \right\}$. For the sake of clarity denote: $$a=\emptyset,\;b=\left \{\emptyset\right \},\;c=\left \{\{1\}\right \},\;d=\left \{\emptyset,\{1\}\right \}\qquad (*)$$
The set $\mathcal{P}(\mathcal{P}(\mathcal{P}(A)))$ is $$\mathcal{P}(\mathcal{P}(\mathcal{P}(A)))=\{ \emptyset,\left \{a\right \},\left \{b\right \},\left \{c\right \},\left \{d\right \},\left \{a,b\right \},\left \{a,c\right \},\left \{a,d\right \},\left \{b,c\right \},\left \{b,d\right \},\left \{c,d\right \},\\\left \{a,b,c\right \},\left \{a,b,d\right \},\left \{a,c,d\right \},\left \{b,c,d\right \},\left \{a,b,c,d\right \}\}$$ Now, we only need to substitute according to $(*)$. For example $\left \{b,c,d\right \}=\left \{\left \{\emptyset\right \},\left \{\{1\}\right \},\left \{\emptyset,\{1\}\right \}\right \}.$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K