MHB What are Bessel Functions and how can they help solve differential equations?

Click For Summary
Bessel functions, specifically the first kind \( J_{\nu}(x) \) and second kind \( Y_n(x) \), are crucial for solving specific differential equations, such as \( x^2 y'' + x y' + (x^2 - \nu^2) y = 0 \). When \( \nu \) is an integer, the general solution incorporates both \( J_n(x) \) and \( Y_n(x) \), while modified Bessel functions \( I_{\nu}(x) \) and \( K_{\nu}(x) \) are used for equations of the form \( x^2 y'' + x y' + (-x^2 - \nu^2) y = 0 \). The discussion also highlights a general solution for a broader class of differential equations, provided certain conditions are met. Graphs of these functions can assist in determining initial conditions. The shared PDF document serves as a valuable resource for students studying these concepts.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
This is a helpful document I got from one of my DE's teachers in graduate school, and I've toted it around with me. I will type it up here, as well as attach a pdf you can download.

Bessel Functions​

$$J_{\nu}(x)=\sum_{m=0}^{\infty}\frac{(-1)^{m}x^{\nu+2m}}{2^{\nu+2m} \, m! \,\Gamma(\nu+m+1)}$$
is a Bessel function of the first kind of order $\nu$. The general solution of $x^2 \, y''+x \, y'+(x^2-\nu^2) \, y=0$ is $y=c_1 \, J_{\nu}(x)+c_2 \, J_{-\nu}(x)$. If $\nu=n$ is an integer, the general solution is $y=c_1 \, J_n(x)+c_2 \, Y_n(x)$ where $Y_n(x)$ is the Bessel function of the second kind of order $n$. Here, $Y_n(x)$ equals $\frac{2}{\pi} \, \ln\left(\frac{x}{s}\right)$ plus a power series.

The solutions of $x^2 \, y''+x \, y'+(-x^2-\nu^2) \, y=0$ are expressible in terms of modified Bessel functions of the first/second kind of order $\nu$, namely $I_{\nu}(x)$ and $K_{\nu}(x)$.

The graphs:

View attachment 4758
View attachment 4757
View attachment 4756
View attachment 4755
View attachment 4754
View attachment 4753

You can use these graphs sometimes to work out initial conditions, particularly if any of them are zero.

Equations Solvable in Terms of Bessel Functions​

If $(1-a)^2\ge 4c$ and if neither $d$, $p$ nor $q$ is zero, then, except in the obvious special case when it reduces to the Cauchy-Euler equation $(x^2 y''+axy'+cy=0)$, the differential equation
$$x^2y''+x(a+2bx^p)y'+[c+dx^{2q}+b(a+p-1)x^p+b^2x^{2p}]y=0$$
has as general solution
$$y=x^{\alpha} \, e^{-\beta x^p} [C_1 \, J_{\nu}(\varepsilon x^q)+C_2 Y_{\nu}(\varepsilon x^q)]$$
where
$$\alpha=\frac{1-a}{2}, \qquad \beta=\frac{b}{p},\qquad \varepsilon=\frac{\sqrt{|d|}}{q},\qquad \nu=
\frac{\sqrt{(1-a)^2-4c}}{2q}.$$
If $d<0$, then $J_{\nu}$ and $Y_{\nu}$ are to be replaced by $I_{\nu}$ and $K_{\nu}$, respectively. If $\nu$ is not an integer, then $Y_{\nu}$ and $K_{\nu}$ can be replaced by $J_{-\nu}$ and $I_{-\nu}$ if desired.

The following file is a pdf of the above.

View attachment 4760
 

Attachments

Physics news on Phys.org
That will be helpful to many students. Thanks for taking the time to type it up and for sharing.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
358
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
568