Artusartos
- 236
- 0
I'm having trouble visualizing the riemann-stieltjies integral...
Our textbook states:
We assume throughout this section that F is an increasing function on a closed interval [a,b]. To avoid trivialities we assume F(a)<F(b). All left-hand and right-hand limits exist...We use the notation
F(t^-)= lim_{x \rightarrow t^-} F(x) and F(t^+)= lim_{x \rightarrow t^+} F(x)
For a bounded function f on [a,b] and a partition P={a=t_0 < t_1 < ... < t_n = b} of [a,b], we write
J_F(f,P) = \sum_{k=0}^n f(t_k) [F(t_k^+) - F(t_k^-)]
The upper Darboux-Stieltjes sum is
U_F(f,P) = J_F(f,P) + \sum_{k=1}^n max(f, (t_{k-1}, t_k) [F(t_k^+) - F(t_{k-1}^-)]
I'm having trouble visualizing this...also, by F(x), do they mean the integral of f(x)?
Thanks in advance
Our textbook states:
We assume throughout this section that F is an increasing function on a closed interval [a,b]. To avoid trivialities we assume F(a)<F(b). All left-hand and right-hand limits exist...We use the notation
F(t^-)= lim_{x \rightarrow t^-} F(x) and F(t^+)= lim_{x \rightarrow t^+} F(x)
For a bounded function f on [a,b] and a partition P={a=t_0 < t_1 < ... < t_n = b} of [a,b], we write
J_F(f,P) = \sum_{k=0}^n f(t_k) [F(t_k^+) - F(t_k^-)]
The upper Darboux-Stieltjes sum is
U_F(f,P) = J_F(f,P) + \sum_{k=1}^n max(f, (t_{k-1}, t_k) [F(t_k^+) - F(t_{k-1}^-)]
I'm having trouble visualizing this...also, by F(x), do they mean the integral of f(x)?
Thanks in advance