MHB What are the angles of an isosceles triangle with a specific ratio?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $ABC$ be an isosceles triangle such that $AB=AC$. Find the angles of $\triangle ABC$ if $\dfrac{AB}{BC}=1+2\cos\dfrac{2\pi}{7}$.
 
Mathematics news on Phys.org
Write $\alpha$ for the two equal angles in the isosceles triangle, so that the angle at the apex is $\pi - 2\alpha$. By the sine rule, $$\frac{AB}{AC} = \frac{\sin\alpha}{\sin(\pi - 2\alpha)} = \frac{\sin\alpha}{\sin( 2\alpha)} = \frac{\sin\alpha}{2\sin\alpha\cos\alpha} = \frac1{2\cos\alpha}.$$ Now for a bit of trigonometry: $$\begin{aligned} \sin(3\theta) = \sin(2\theta+\theta) &= \sin(2\theta)\cos\theta + \cos(2\theta)\sin\theta \\ &= 2\sin\theta\cos^2\theta + \cos(2\theta)\sin\theta = \sin\theta(2\cos^2\theta + \cos(2\theta)) = \sin\theta(1 + 2\cos(2\theta)) \end{aligned}$$ (because $2\cos^2\theta = \cos(2\theta) + 1$). Therefore $1+ 2\cos(2\theta) = \dfrac{\sin(3\theta)}{\sin\theta}.$ In particular, with $\theta = \frac\pi7$, $$1 + 2\cos\tfrac{2\pi}7 = \frac{\sin\frac{3\pi}7}{\sin\frac{\pi}7} = \frac{\sin\frac{3\pi}7}{\sin\frac{6\pi}7} = \frac{\sin\frac{3\pi}7}{2\sin\frac{3\pi}7\cos\frac{3\pi}7} = \frac1{2\cos\frac{3\pi}7}.$$ It follows that if $$\frac{AB}{AC} = 1 + 2\cos\tfrac{2\pi}7$$ then $$ \frac1{2\cos\alpha} = \frac1{2\cos\frac{3\pi}7}$$, so that $\alpha = \frac{3\pi}7$. Thus the angles of the triangle are $\frac{3\pi}7$, $\frac{3\pi}7$ and $\frac\pi7$.
 
Bravo, Opalg!(Cool)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
4
Views
2K
Replies
4
Views
1K
Replies
1
Views
987
Replies
3
Views
2K
Replies
2
Views
2K
Replies
5
Views
2K
Back
Top