What are the axioms underlying the definition of sine?

  • Context: MHB 
  • Thread starter Thread starter roni1
  • Start date Start date
  • Tags Tags
    Axioms Definition
Click For Summary
SUMMARY

The axioms underlying the definition of sine are primarily derived from the axioms of Euclidean Geometry and the Field of real numbers. Sine can also be defined through a power series expansion, which requires only the axioms of a Field, making it a more general definition applicable to both real and complex numbers. Additionally, mathematical statements can be categorized into axioms, definitions, and propositions, with axioms serving as foundational assumptions for further mathematical discourse. The discussion highlights the relationship between sine and differential equations, specifically through the system of equations that define sine and cosine.

PREREQUISITES
  • Understanding of Euclidean Geometry axioms
  • Familiarity with the Field of real numbers
  • Knowledge of power series and their convergence
  • Basic concepts of differential equations
NEXT STEPS
  • Study the axioms of Euclidean Geometry in detail
  • Explore the properties of Fields in mathematics
  • Learn about power series and their applications in calculus
  • Investigate the solution of differential equations using Picard iteration
USEFUL FOR

Mathematics educators, students in advanced calculus or analysis courses, and anyone interested in the foundational concepts of trigonometric functions and their definitions.

roni1
Messages
20
Reaction score
0
My class is difficult to teach, but I have a question that I think that I share the forum and if you give nice ideas it can be helpful.
This is my last question of axioms and so on because I don't want to be as a mathematic cranck.
So, this is my last question that deal with it.
What I need to answer to the question: "What are the axioms of sinus definition?"
Any ideas?
 
Physics news on Phys.org
roni said:
My class is difficult to teach, but I have a question that I think that I share the forum and if you give nice ideas it can be helpful.
This is my last question of axioms and so on because I don't want to be as a mathematic cranck.
So, this is my last question that deal with it.
What I need to answer to the question: "What are the axioms of sinus definition?"
Any ideas?

Hey roni,

Classicaly, the sine is defined through the axioms (also known as postulates) of Euclidean Geometry, which is what is needed to define a right-angled triangle. And we also need the axioms of the Field of the real numbers, since the sine is defined as the quotient of 2 real numbers.

However, the sine has a number of equivalent definitions.
One of those is:
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots $$
With this definition it suffices to just have the axioms of a Field.
And the same definition applies both to the field of the real numbers and to the field of the complex numbers.
So this definition is more general than the geometric definition and requires fewer axioms.

For the record, there are 3 types of statements in mathematics:
  1. Axioms or Postulates.
  2. Definitions.
  3. Propositions, Theorems, Lemmas, Corollaries (all require a Proof).
The axioms or postulates are the assumptions we make that define the framework of what follows.
Definitions define terms or symbols that we will then use afterwards.
Propositions, theorems, lemmas, and corollaries are statements that follow from the axioms and definitions. They are accompanied by a Proof to prove that they are actually true. Each of these terms is used interchangeably and formally they all mean the same thing. It's a matter of preference which one is used.
 
roni said:
My class is difficult to teach, but I have a question that I think that I share the forum and if you give nice ideas it can be helpful.

Still I am curious about what class you are teaching. Is it introductory analysis?

roni said:
This is my last question of axioms and so on because I don't want to be as a mathematic cranck.

Asking about axioms does not make you a crank.

roni said:
So, this is my last question that deal with it.
What I need to answer to the question: "What are the axioms of sinus definition?"
Any ideas?

It is my impression that some of the "axioms" you are asking about are really definitions of minimal structures (such as the algebraic structure "field") underlying the concept of interest (such as "integral" or "sine".)

In addition to the answers by ILS in post #2, I would like to offer my favorite one. Namely, given the system of differential equations
\[
\left\{
\begin{aligned}
\dot{u} &= v,\\
\dot{v} &= -u,\\
\end{aligned}
\right.
\]
with initial values $u(0) = 0, v(0) = 1$, we denote the global solution $(u, v) : \mathbb{R} \to \mathbb{R}^2$ and then we define $\sin := u$ and $\cos := v$.

If you apply Picard iteration to solve the above differential equation, then for $u$ you obtain precisely the power series from post #2, while for $v$ you obtain the familiar power series for $\cos$.

(Credits to Joost Hulshof (VU, Amsterdam) for showing this once in his Analysis I course.)
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
608
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K