I What Are the Benefits of Triangle Inequality in Mathematics?

AI Thread Summary
The triangle inequality is essential in mathematics as it defines a distance function or metric, ensuring that the distance between two points is always non-negative and adheres to specific properties. It simplifies solving inequalities, such as |x+a| + |x+b| < c, by allowing the separation of absolute values into sums, thereby streamlining proofs. Additionally, it plays a critical role in analysis and topology, particularly in proving properties of limits of sequences and functions. The triangle inequality is widely applicable across various mathematical fields and is foundational for understanding more complex concepts. Its significance extends beyond just geometry, influencing areas like physics and analysis.
MiddleEast
Messages
23
Reaction score
5
Hi,
Recently I studied triangle inequality and the proof using textbook precalculus by David Cohen.
My question is whats the benefit of this inequality ? One benefit I found is to solve inequality of the form |x+a| + |x+b| < c which make the solution much easier than taking cases. I assume this inequality can be used in proof? the beauty of this inequality is to separate absolute of sum to sum of absolutes which - supposedly - will make proving (whatever the proof is) much easier.

Are there any other benefits ?
Are there any important inequality other triangle and AM-GM inequality that quite famous ?
Thanks.
 
Mathematics news on Phys.org
The triangle inequality is a fundamental defining property of a distance function or metric (of which ##| x - y|## is probably the first you'll encounter). If you have a set and you want to have a notion of the distance between two elements of that set, which we'll denote by ##d(x, y)##, then we have four fundamental properties. Here ##x, y, z## are any elements in your set.
$$\text{1)} \ d(x, y) \ge 0$$$$\text{2)} \ d(x, y) = 0 \ \Leftrightarrow \ x = y$$$$\text{3)} \ d(x, y) = d(y, x)$$$$\text{4)} \ \text{(the triangle inequality)} \ d(x, z) \le d(x, y) + d(y, z)$$
In any case, the triangle inequality is used all over mathematics and physics.
 
MiddleEast said:
Hi,
Recently I studied triangle inequality and the proof using textbook precalculus by David Cohen.
My question is whats the benefit of this inequality ? One benefit I found is to solve inequality of the form |x+a| + |x+b| < c which make the solution much easier than taking cases. I assume this inequality can be used in proof? the beauty of this inequality is to separate absolute of sum to sum of absolutes which - supposedly - will make proving (whatever the proof is) much easier.

Are there any other benefits ?
Are there any important inequality other triangle and AM-GM inequality that quite famous ?
Thanks.
As Perok mentioned, thats the idea of the triangle inequality. It is also a useful tool for proving properties of limits of sequences and functions in Analysis, Topologies with a metric...
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top